These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33388848)
1. SERS characterization of aggregated and isolated bacteria deposited on silver-based substrates. Andrei CC; Moraillon A; Larquet E; Potara M; Astilean S; Jakab E; Bouckaert J; Rosselle L; Skandrani N; Boukherroub R; Ozanam F; Szunerits S; Gouget-Laemmel AC Anal Bioanal Chem; 2021 Feb; 413(5):1417-1428. PubMed ID: 33388848 [TBL] [Abstract][Full Text] [Related]
2. Towards a receptor-free immobilization and SERS detection of urinary tract infections causative pathogens. Mircescu NE; Zhou H; Leopold N; Chiş V; Ivleva NP; Niessner R; Wieser A; Haisch C Anal Bioanal Chem; 2014 May; 406(13):3051-8. PubMed ID: 24705957 [TBL] [Abstract][Full Text] [Related]
3. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Chen X; Tang M; Liu Y; Huang J; Liu Z; Tian H; Zheng Y; de la Chapelle ML; Zhang Y; Fu W Mikrochim Acta; 2019 Jan; 186(2):102. PubMed ID: 30637528 [TBL] [Abstract][Full Text] [Related]
4. Sources of variability in SERS spectra of bacteria: comprehensive analysis of interactions between selected bacteria and plasmonic nanostructures. Witkowska E; Niciński K; Korsak D; Szymborski T; Kamińska A Anal Bioanal Chem; 2019 Apr; 411(10):2001-2017. PubMed ID: 30828759 [TBL] [Abstract][Full Text] [Related]
5. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Chu H; Huang Y; Zhao Y Appl Spectrosc; 2008 Aug; 62(8):922-31. PubMed ID: 18702867 [TBL] [Abstract][Full Text] [Related]
6. Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Sivanesan A; Witkowska E; Adamkiewicz W; Dziewit Ł; Kamińska A; Waluk J Analyst; 2014 Mar; 139(5):1037-43. PubMed ID: 24419003 [TBL] [Abstract][Full Text] [Related]
7. Characterization of thermophilic bacteria using surface-enhanced Raman scattering. Culha M; Adigüzel A; Yazici MM; Kahraman M; Sahin F; Güllüce M Appl Spectrosc; 2008 Nov; 62(11):1226-32. PubMed ID: 19007464 [TBL] [Abstract][Full Text] [Related]
8. Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens. Sundaram J; Park B; Kwon Y; Lawrence KC Int J Food Microbiol; 2013 Oct; 167(1):67-73. PubMed ID: 23806291 [TBL] [Abstract][Full Text] [Related]
9. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Zhou H; Yang D; Ivleva NP; Mircescu NE; Niessner R; Haisch C Anal Chem; 2014 Feb; 86(3):1525-33. PubMed ID: 24387044 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced Raman spectroscopy-active substrates: adapting the shape of plasmonic nanoparticles for different biological applications. Vitol EA; Friedman G; Gogotsi Y J Nanosci Nanotechnol; 2014 Apr; 14(4):3046-51. PubMed ID: 24734732 [TBL] [Abstract][Full Text] [Related]
11. Experimental parameters influencing surface-enhanced Raman scattering of bacteria. Kahraman M; Yazici MM; Sahin F; Culha M J Biomed Opt; 2007; 12(5):054015. PubMed ID: 17994903 [TBL] [Abstract][Full Text] [Related]
12. Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced Raman spectroscopy and chemometric analysis. Wu X; Huang YW; Park B; Tripp RA; Zhao Y Talanta; 2015 Jul; 139():96-103. PubMed ID: 25882413 [TBL] [Abstract][Full Text] [Related]
13. Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Paccotti N; Boschetto F; Horiguchi S; Marin E; Chiadò A; Novara C; Geobaldo F; Giorgis F; Pezzotti G Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30558342 [TBL] [Abstract][Full Text] [Related]
14. Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles. Kahraman M; Yazici MM; Sahin F; Bayrak OF; Culha M Appl Spectrosc; 2007 May; 61(5):479-85. PubMed ID: 17555616 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Wang H; Zhou Y; Jiang X; Sun B; Zhu Y; Wang H; Su Y; He Y Angew Chem Int Ed Engl; 2015 Apr; 54(17):5132-6. PubMed ID: 25820791 [TBL] [Abstract][Full Text] [Related]
16. On sample preparation for surface-enhanced raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Kahraman M; Keseroğlu K; Culha M Appl Spectrosc; 2011 May; 65(5):500-6. PubMed ID: 21513592 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the surface enhanced raman scattering (SERS) of bacteria. Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017 [TBL] [Abstract][Full Text] [Related]
18. Reproducible E. coli detection based on label-free SERS and mapping. Yang D; Zhou H; Haisch C; Niessner R; Ying Y Talanta; 2016; 146():457-63. PubMed ID: 26695290 [TBL] [Abstract][Full Text] [Related]
19. SERS-based immunocapture and detection of pathogenic bacteria using a boronic acid-functionalized polydopamine-coated Au@Ag nanoprobe. Wang Y; Li Q; Zhang R; Tang K; Ding C; Yu S Mikrochim Acta; 2020 Apr; 187(5):290. PubMed ID: 32342176 [TBL] [Abstract][Full Text] [Related]
20. SERS Nanowire Chip and Machine Learning-Enabled Classification of Wild-Type and Antibiotic-Resistant Bacteria at Species and Strain Levels. Das S; Saxena K; Tinguely JC; Pal A; Wickramasinghe NL; Khezri A; Dubey V; Ahmad A; Perumal V; Ahmad R; Wadduwage DN; Ahluwalia BS; Mehta DS ACS Appl Mater Interfaces; 2023 May; 15(20):24047-24058. PubMed ID: 37158639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]