These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 33388891)

  • 1. Genes and genome editing tools for breeding desirable phenotypes in ornamentals.
    Giovannini A; Laura M; Nesi B; Savona M; Cardi T
    Plant Cell Rep; 2021 Mar; 40(3):461-478. PubMed ID: 33388891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances.
    Mekapogu M; Kwon OK; Song HY; Jung JA
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome engineering in ornamental plants: Current status and future prospects.
    Kishi-Kaboshi M; Aida R; Sasaki K
    Plant Physiol Biochem; 2018 Oct; 131():47-52. PubMed ID: 29709514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted plant improvement through genome editing: from laboratory to field.
    Miladinovic D; Antunes D; Yildirim K; Bakhsh A; Cvejić S; Kondić-Špika A; Marjanovic Jeromela A; Opsahl-Sorteberg HG; Zambounis A; Hilioti Z
    Plant Cell Rep; 2021 Jun; 40(6):935-951. PubMed ID: 33475781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated mutagenesis of FT/TFL1 in petunia improves plant architecture and early flowering.
    Abdulla MF; Mostafa K; Kavas M
    Plant Mol Biol; 2024 Jun; 114(3):69. PubMed ID: 38842584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breeding of ornamental orchids with focus on Phalaenopsis: current approaches, tools, and challenges for this century.
    Iiyama CM; Vilcherrez-Atoche JA; Germanà MA; Vendrame WA; Cardoso JC
    Heredity (Edinb); 2024 Apr; 132(4):163-178. PubMed ID: 38302667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current and future editing reagent delivery systems for plant genome editing.
    Ran Y; Liang Z; Gao C
    Sci China Life Sci; 2017 May; 60(5):490-505. PubMed ID: 28527114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of cereal plant architecture by genome editing to improve yields.
    Huang X; Hilscher J; Stoger E; Christou P; Zhu C
    Plant Cell Rep; 2021 Jun; 40(6):953-978. PubMed ID: 33559722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 Application in Canadian Public and Private Plant Breeding.
    Gleim S; Lubieniechi S; Smyth SJ
    CRISPR J; 2020 Feb; 3(1):44-51. PubMed ID: 32091256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing].
    Khlestkina EK; Shumny VK
    Genetika; 2016 Jul; 52(7):774-87. PubMed ID: 29368840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing of polyploid crops: prospects, achievements and bottlenecks.
    Schaart JG; van de Wiel CCM; Smulders MJM
    Transgenic Res; 2021 Aug; 30(4):337-351. PubMed ID: 33846956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes.
    Tay Fernandez CG; Nestor BJ; Danilevicz MF; Marsh JI; Petereit J; Bayer PE; Batley J; Edwards D
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Editing EU legislation to fit plant genome editing: The use of genome editing technologies in plant breeding requires a novel regulatory approach for new plant varieties that involves farmers.
    Ricroch AE; Ammann K; Kuntz M
    EMBO Rep; 2016 Oct; 17(10):1365-1369. PubMed ID: 27629042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Successful floral-dipping transformation of post-anthesis lisianthus (Eustoma grandiflorum) flowers.
    Fang F; Oliva M; Ehi-Eromosele S; Zaccai M; Arazi T; Oren-Shamir M
    Plant J; 2018 Nov; 96(4):869-879. PubMed ID: 30156348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and Directional Improvement of Elite Rice Variety via Combination of Genomics and Multiplex Genome Editing.
    Liu P; He L; Mei L; Zhai W; Chen X; Ma B
    J Agric Food Chem; 2022 May; 70(20):6156-6167. PubMed ID: 35575308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant genome engineering from lab to field-a Keystone Symposia report.
    Cable J; Ronald PC; Voytas D; Zhang F; Levy AA; Takatsuka A; Arimura SI; Jacobsen SE; Toki S; Toda E; Gao C; Zhu JK; Boch J; Van Eck J; Mahfouz M; Andersson M; Fridman E; Weiss T; Wang K; Qi Y; Jores T; Adams T; Bagchi R
    Ann N Y Acad Sci; 2021 Dec; 1506(1):35-54. PubMed ID: 34435370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate product from process: framing the debate that surrounds the potential uptake of new breeding technologies.
    Parry G; Jose S
    Physiol Plant; 2018 Dec; 164(4):372-377. PubMed ID: 29220093
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.