BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33389050)

  • 21. Monte Carlo calculation of the dose distributions of two 106Ru eye applicators.
    Sánchez-Reyes A; Tello JI; Guix B; Salvat F
    Radiother Oncol; 1998 Nov; 49(2):191-6. PubMed ID: 10052886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measured and Monte Carlo simulated surface dose reduction for superficial X-rays incident on tissue with underlying air or bone.
    Baines J; Zawlodzka S; Markwell T; Chan M
    Med Phys; 2018 Feb; 45(2):926-933. PubMed ID: 29235131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dosimetric effect of nanoparticles in the breast cancer treatment using INTRABEAM
    Tegaw EM; Geraily G; Etesami SM; Ghanbari H; Gholami S; Shojaei M; Farzin M; Tadesse GF
    Biomed Phys Eng Express; 2021 Apr; 7(3):. PubMed ID: 33836513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rotational radiotherapy of breast cancer with polyenergetic kilovoltage X-ray beams: An experimental and Monte Carlo phantom study.
    Buonanno F; Sarno A; De Lucia PA; Di Lillo F; Masi M; Di Franco F; Mettivier G; Russo P
    Phys Med; 2019 Jun; 62():63-72. PubMed ID: 31153400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo commissioning of clinical electron beams using large field measurements.
    O'Shea TP; Sawkey DL; Foley MJ; Faddegon BA
    Phys Med Biol; 2010 Jul; 55(14):4083-105. PubMed ID: 20601775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraoperative Radiotherapy With INTRABEAM: Technical and Dosimetric Considerations.
    Sethi A; Emami B; Small W; Thomas TO
    Front Oncol; 2018; 8():74. PubMed ID: 29632850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dosimetry of MammoSite® applicator: comparison between Monte Carlo simulation, measurements, and treatment planning calculation.
    Oshaghi M; Sadeghi M; Mahdavi SR; Shirazi A
    J Cancer Res Ther; 2013; 9(2):224-9. PubMed ID: 23771363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source.
    White SA; Landry G; Fonseca GP; Holt R; Rusch T; Beaulieu L; Verhaegen F; Reniers B
    Med Phys; 2014 Jun; 41(6):061701. PubMed ID: 24877796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Therapeutic analysis of Intrabeam-based intraoperative radiation therapy in the treatment of unicentric breast cancer lesions utilizing a spherical target volume model.
    Schwid M; Donnelly ED; Zhang H
    J Appl Clin Med Phys; 2017 Sep; 18(5):184-194. PubMed ID: 28741896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel approach for superficial intraoperative radiotherapy (IORT) using a 50 kV X-ray source: a technical and case report.
    Schneider F; Clausen S; Thölking J; Wenz F; Abo-Madyan Y
    J Appl Clin Med Phys; 2014 Jan; 15(1):4502. PubMed ID: 24423847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo simulation of electron beams generated by a 12 MeV dedicated mobile IORT accelerator.
    Iaccarino G; Strigari L; D'Andrea M; Bellesi L; Felici G; Ciccotelli A; Benassi M; Soriani A
    Phys Med Biol; 2011 Jul; 56(14):4579-96. PubMed ID: 21725139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo Simulation of Electron Beams produced by LIAC Intraoperative Radiation Therapy Accelerator.
    Robatjazi M; Tanha K; Mahdavi SR; Baghani HR; Mirzaei HR; Mousavi M; Nafissi N; Akbari E
    J Biomed Phys Eng; 2018 Mar; 8(1):43-52. PubMed ID: 29732339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organ absorbed doses in the IORT treatment of breast cancer with the INTRABEAM device: a Monte-Carlo study.
    Nasir Z; Probst L; Schneider F; Clausen S; Bürgy D; Glatting G; Nwankwo O
    Biomed Phys Eng Express; 2023 Feb; 9(2):. PubMed ID: 36745910
    [No Abstract]   [Full Text] [Related]  

  • 34. Commissioning and quality assurance for the treatment delivery components of the AccuBoost system.
    Iftimia I; Talmadge M; Ladd R; Halvorsen P
    J Appl Clin Med Phys; 2015 Mar; 16(2):5156. PubMed ID: 26103184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The novel technique of delivering targeted intraoperative radiotherapy (Targit) for early breast cancer.
    Vaidya JS; Baum M; Tobias JS; Morgan S; D'Souza D
    Eur J Surg Oncol; 2002 Jun; 28(4):447-54. PubMed ID: 12099658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing.
    Yang Y; Rivard MJ
    Med Phys; 2010 Nov; 37(11):5665-71. PubMed ID: 21158278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attenuation of intracavitary applicators in 192Ir-HDR brachytherapy.
    Ye SJ; Brezovich IA; Shen S; Duan J; Popple RA; Pareek PN
    Med Phys; 2004 Jul; 31(7):2097-106. PubMed ID: 15305463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dosimetric characteristics of the INTRABEAM ® system with spherical applicators in the presence of air gaps and tissue heterogeneities.
    Tegaw EM; Gholami S; Omyan G; Geraily G
    Radiat Environ Biophys; 2020 May; 59(2):295-306. PubMed ID: 32236740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributions.
    Rivard MJ; Melhus CS; Granero D; Perez-Calatayud J; Ballester F
    Med Phys; 2009 Jun; 36(6):1968-75. PubMed ID: 19610285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo simulation and analytical calculation methods to investigate the potential of nanoparticles for INTRABEAM® IORT machine.
    Omyan G; Gholami S; Zad AG; Severgnini M; Longo F; Kalantari F
    Nanomedicine; 2020 Nov; 30():102288. PubMed ID: 32805406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.