These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 33389153)

  • 1. Behaviorally-mediated trophic cascade attenuated by prey use of risky places at safe times.
    Palmer MS; Portales-Reyes C; Potter C; Mech LD; Isbell F
    Oecologia; 2021 Jan; 195(1):235-248. PubMed ID: 33389153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural and experimental tests of trophic cascades: gray wolves and white-tailed deer in a Great Lakes forest.
    Flagel DG; Belovsky GE; Beyer DE
    Oecologia; 2016 Apr; 180(4):1183-94. PubMed ID: 26670677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habitat use of sympatric prey suggests divergent anti-predator responses to recolonizing gray wolves.
    Dellinger JA; Shores CR; Craig A; Heithaus MR; Ripple WJ; Wirsing AJ
    Oecologia; 2019 Feb; 189(2):487-500. PubMed ID: 30539299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innate threat-sensitive foraging: black-tailed deer remain more fearful of wolf than of the less dangerous black bear even after 100 years of wolf absence.
    Chamaillé-Jammes S; Malcuit H; Le Saout S; Martin JL
    Oecologia; 2014 Apr; 174(4):1151-8. PubMed ID: 24288079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade.
    Kauffman MJ; Brodie JF; Jules ES
    Ecology; 2010 Sep; 91(9):2742-55. PubMed ID: 20957967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposing risk: landscape structure and wolf behavior generate different predation patterns in two sympatric ungulates.
    Gervasi V; Sand H; Zimmermann B; Mattisson J; Wabakken P; Linnell JD
    Ecol Appl; 2013 Oct; 23(7):1722-34. PubMed ID: 24261051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What cues do ungulates use to assess predation risk in dense temperate forests?
    Kuijper DP; Verwijmeren M; Churski M; Zbyryt A; Schmidt K; Jędrzejewska B; Smit C
    PLoS One; 2014; 9(1):e84607. PubMed ID: 24404177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wolves make roadways safer, generating large economic returns to predator conservation.
    Raynor JL; Grainger CA; Parker DP
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34031245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial overlap of gray wolves and ungulate prey changes seasonally corresponding to prey migration.
    Wehr NH; Moore SA; Isaac EJ; Kellner KF; Millspaugh JJ; Belant JL
    Mov Ecol; 2024 Apr; 12(1):33. PubMed ID: 38671527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eat or be eaten: Implications of potential exploitative competition between wolves and humans across predator-savvy and predator-naive deer populations.
    Candler EM; Chakrabarti S; Severud WJ; Bump JK
    Ecol Evol; 2023 Nov; 13(11):e10694. PubMed ID: 38034341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prey risk allocation in a grazing ecosystem.
    Gude JA; Garrott RA; Borkowski JJ; King F
    Ecol Appl; 2006 Feb; 16(1):285-98. PubMed ID: 16705980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logging, linear features, and human infrastructure shape the spatial dynamics of wolf predation on an ungulate neonate.
    Johnson-Bice SM; Gable TD; Homkes AT; Windels SK; Bump JK; Bruggink JG
    Ecol Appl; 2023 Oct; 33(7):e2911. PubMed ID: 37602927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of a marine keystone predator transforms terrestrial predator-prey dynamics.
    Roffler GH; Eriksson CE; Allen JM; Levi T
    Proc Natl Acad Sci U S A; 2023 Jan; 120(5):e2209037120. PubMed ID: 36689656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phenology of fear: Investigating scale and seasonality in predator-prey games between wolves and white-tailed deer.
    Clare JDJ; Zuckerberg B; Liu N; Stenglein JL; Van Deelen TR; Pauli JN; Townsend PA
    Ecology; 2023 May; 104(5):e4019. PubMed ID: 36882907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spawning salmon disrupt trophic coupling between wolves and ungulate prey in coastal British Columbia.
    Darimont CT; Paquet PC; Reimchen TE
    BMC Ecol; 2008 Sep; 8():14. PubMed ID: 18764930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ungulate predation and ecological roles of wolves and coyotes in eastern North America.
    Benson JF; Loveless KM; Rutledge LY; Patterson BR
    Ecol Appl; 2017 Apr; 27(3):718-733. PubMed ID: 28064464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White-tailed deer population dynamics in a multipredator landscape shaped by humans.
    Ganz TR; Bassing SB; DeVivo MT; Gardner B; Kertson BN; Satterfield LC; Shipley LA; Turnock BY; Walker SL; Abrahamson D; Wirsing AJ; Prugh LR
    Ecol Appl; 2024 Jul; 34(5):e3003. PubMed ID: 38890813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral effects of wolf presence on moose habitat selection: testing the landscape of fear hypothesis in an anthropogenic landscape.
    Sand H; Jamieson M; Andrén H; Wikenros C; Cromsigt J; Månsson J
    Oecologia; 2021 Sep; 197(1):101-116. PubMed ID: 34420087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wolf presence and increased willow consumption by Yellowstone elk: implications for trophic cascades.
    Creel S; Christianson D
    Ecology; 2009 Sep; 90(9):2454-66. PubMed ID: 19769124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of prey vulnerability through analysis of wolf movements and kill sites.
    Bergman EJ; Garrott RA; Creel S; Borkowski JJ; Jaffe R; Watson EG
    Ecol Appl; 2006 Feb; 16(1):273-84. PubMed ID: 16705979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.