These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 33389182)
1. Development of potential map for groundwater abstraction in the northwest region of Bangladesh using RS-GIS-based weighted overlay analysis and water-table-fluctuation technique. Nowreen S; Newton IH; Zzaman RU; Islam AKMS; Islam GMT; Alam MS Environ Monit Assess; 2021 Jan; 193(1):24. PubMed ID: 33389182 [TBL] [Abstract][Full Text] [Related]
2. Assessment of groundwater recharge potential in a typical geological transition zone in Bauchi, NE-Nigeria using remote sensing/GIS and MCDA approaches. Abdullateef L; Tijani MN; Nuru NA; John S; Mustapha A Heliyon; 2021 Apr; 7(4):e06762. PubMed ID: 33997372 [TBL] [Abstract][Full Text] [Related]
3. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Shekar PR; Mathew A Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701 [TBL] [Abstract][Full Text] [Related]
4. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques. Thilagavathi N; Subramani T; Suresh M; Karunanidhi D Environ Monit Assess; 2015 Apr; 187(4):164. PubMed ID: 25740689 [TBL] [Abstract][Full Text] [Related]
5. Data on artificial recharge sites identified by geospatial tools in semi-arid region of Anantapur District, Andhra Pradesh, India. Rajasekhar M; Sudarsana Raju G; Siddi Raju R; Imran Basha U Data Brief; 2018 Aug; 19():462-474. PubMed ID: 29900343 [TBL] [Abstract][Full Text] [Related]
6. Geospatial application on mapping groundwater recharge zones in Makutupora basin, Tanzania. Kisiki CP; Bekele TW; Ayenew T; Mjemah IC Heliyon; 2022 Oct; 8(10):e10760. PubMed ID: 36211994 [TBL] [Abstract][Full Text] [Related]
7. Delineating groundwater potential zones using integrated remote sensing and GIS in Lahore, Pakistan. Yousaf B; Javid K; Mahmood S; Habib W; Hussain S Environ Monit Assess; 2024 Sep; 196(10):884. PubMed ID: 39225827 [TBL] [Abstract][Full Text] [Related]
8. Groundwater potential mapping in Trans Yamuna Region, Prayagraj, using combination of geospatial technologies and AHP method. Swarnim ; Tripathi JN; Sonker I; Tiwari SP Environ Monit Assess; 2023 Oct; 195(11):1375. PubMed ID: 37882900 [TBL] [Abstract][Full Text] [Related]
9. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources. Monirul Islam M; Kanungoe P Water Sci Technol; 2005; 52(12):251-8. PubMed ID: 16477993 [TBL] [Abstract][Full Text] [Related]
10. Groundwater potential mapping in Jashore, Bangladesh. Fatema K; Joy MAR; Amin FMR; Sarkar SK Heliyon; 2023 Mar; 9(3):e13966. PubMed ID: 36925550 [TBL] [Abstract][Full Text] [Related]
11. Determination of potential recharge zones and its validation against groundwater quality parameters through the application of GIS and remote sensing techniques in uMhlathuze catchment, KwaZulu-Natal, South Africa. Ponnusamy D; Elumalai V Chemosphere; 2022 Nov; 307(Pt 4):136121. PubMed ID: 35995193 [TBL] [Abstract][Full Text] [Related]
12. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab. Singh A; Panda SN; Kumar KS; Sharma CS Environ Manage; 2013 Jul; 52(1):61-71. PubMed ID: 23775493 [TBL] [Abstract][Full Text] [Related]
13. GIS-based multi-criteria decision-making techniques and analytical hierarchical process for delineation of groundwater potential. Farhat B; Souissi D; Mahfoudhi R; Chrigui R; Sebei A; Ben Mammou A Environ Monit Assess; 2023 Jan; 195(2):285. PubMed ID: 36625986 [TBL] [Abstract][Full Text] [Related]
14. Promoting artificial recharge to enhance groundwater potential in the lower Bhavani River basin of South India using geospatial techniques. Anand B; Karunanidhi D; Subramani T Environ Sci Pollut Res Int; 2021 Apr; 28(15):18437-18456. PubMed ID: 32424751 [TBL] [Abstract][Full Text] [Related]
15. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Moharir KN; Pande CB; Gautam VK; Singh SK; Rane NL Environ Res; 2023 Jul; 228():115832. PubMed ID: 37054834 [TBL] [Abstract][Full Text] [Related]
16. Groundwater potential assessment in the Blue Nile River catchment, Ethiopia, using geospatial and multi-criteria decision-making techniques. Tamesgen Y; Atlabachew A; Jothimani M Heliyon; 2023 Jun; 9(6):e17616. PubMed ID: 37408881 [TBL] [Abstract][Full Text] [Related]
17. Multi-criteria decision making and Dempster-Shafer model-based delineation of groundwater prospect zones from a semi-arid environment. Pandey HK; Singh VK; Singh SK Environ Sci Pollut Res Int; 2022 Jul; 29(31):47740-47758. PubMed ID: 35184239 [TBL] [Abstract][Full Text] [Related]
18. Identification and mapping of groundwater recharge zones using multi influencing factor and analytical hierarchy process. Meng F; Khan MI; Naqvi SAA; Sarwar A; Islam F; Ali M; Tariq A; Ullah S; Soufan W; Faraj TK Sci Rep; 2024 Aug; 14(1):19240. PubMed ID: 39164369 [TBL] [Abstract][Full Text] [Related]
19. Computation of groundwater resources and recharge in Chithar River Basin, South India. Subramani T; Babu S; Elango L Environ Monit Assess; 2013 Jan; 185(1):983-94. PubMed ID: 22961326 [TBL] [Abstract][Full Text] [Related]
20. The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. Siddik MS; Tulip SS; Rahman A; Islam MN; Haghighi AT; Mustafa SMT J Environ Manage; 2022 Aug; 315():115130. PubMed ID: 35483253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]