These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33390006)

  • 1. Photo-Thermoelectric Conversion Using Black Silicon with Enhanced Light Trapping Performance far beyond the Band Edge Absorption.
    Cheng P; Wang H; Müller B; Müller J; Wang D; Schaaf P
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1818-1826. PubMed ID: 33390006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and optical characterization of light trapping silicon nanopore and nanoscrew devices.
    Jin H; Liu GL
    Nanotechnology; 2012 Mar; 23(12):125202. PubMed ID: 22398210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-thin Ag/Si heterojunction hot-carrier photovoltaic conversion Schottky devices for harvesting solar energy at wavelength above 1.1 µm.
    Su ZC; Chang CH; Jhou JC; Lin HT; Lin CF
    Sci Rep; 2023 Apr; 13(1):5388. PubMed ID: 37012262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion.
    Fan P; Wu H; Zhong M; Zhang H; Bai B; Jin G
    Nanoscale; 2016 Aug; 8(30):14617-24. PubMed ID: 27430171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy upconversion in GaP/GaNP core/shell nanowires for enhanced near-infrared light harvesting.
    Dobrovolsky A; Sukrittanon S; Kuang Y; Tu CW; Chen WM; Buyanova IA
    Small; 2014 Nov; 10(21):4403-8. PubMed ID: 25045136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light trapping in ultrathin 25  μm exfoliated Si solar cells.
    Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK
    Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopatterned Back-Reflector with Engineered Near-Field/Far-Field Light Scattering for Enhanced Light Trapping in Silicon-Based Multijunction Solar Cells.
    Cordaro A; Müller R; Tabernig SW; Tucher N; Schygulla P; Höhn O; Bläsi B; Polman A
    ACS Photonics; 2023 Nov; 10(11):4061-4070. PubMed ID: 38027248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of external light trapping for photovoltaic modules.
    van Dijk L; van de Groep J; Di Vece M; Schropp RE
    Opt Express; 2016 Jul; 24(14):A1158-75. PubMed ID: 27410902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wafer-scale nanostructured black silicon with morphology engineering
    Wu S; Chen Q; Zhang L; Ren H; Zhou H; Hu L; Tan CS
    Nanoscale; 2023 Mar; 15(10):4843-4851. PubMed ID: 36805597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Black silicon Schottky photodetector in sub-bandgap near-infrared regime.
    Hu F; Dai XY; Zhou ZQ; Kong XY; Sun SL; Zhang RJ; Wang SY; Lu M; Sun J
    Opt Express; 2019 Feb; 27(3):3161-3168. PubMed ID: 30732341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.
    Baek SW; Shim JH; Seung HM; Lee GS; Hong JP; Lee KS; Park JG
    Nanoscale; 2014 Nov; 6(21):12524-31. PubMed ID: 25177831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Easily Repairable and High-Performance Carbon Nanostructure Absorber for Solar Photothermoelectric Conversion and Photothermal Water Evaporation.
    Cheng P; Wang D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8761-8769. PubMed ID: 36744969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications.
    Kelzenberg MD; Boettcher SW; Petykiewicz JA; Turner-Evans DB; Putnam MC; Warren EL; Spurgeon JM; Briggs RM; Lewis NS; Atwater HA
    Nat Mater; 2010 Mar; 9(3):239-44. PubMed ID: 20154692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture.
    Kuang P; Eyderman S; Hsieh ML; Post A; John S; Lin SY
    ACS Nano; 2016 Jun; 10(6):6116-24. PubMed ID: 27258082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon.
    Wu KH; Li CW
    Materials (Basel); 2015 Sep; 8(9):5922-5932. PubMed ID: 28793542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-bandgap photo-response of black silicon fabricated by femtosecond laser irradiation under water.
    Wang X; Du W; Lun Y; Zhao B; Zhao X
    Opt Express; 2024 May; 32(10):18415-18429. PubMed ID: 38858997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A perovskite solar cell-photothermal-thermoelectric tandem system for enhanced solar energy utilization.
    Zhong H; Zhou Y; Wang C; Wan C; Koumoto K; Wang Z; Lin H
    Sci Technol Adv Mater; 2024; 25(1):2336399. PubMed ID: 38628978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concept for Efficient Light Harvesting in Perovskite Materials via Solar Harvester with Multi-Functional Folded Electrode.
    Wei MQ; Lai YS; Tseng PH; Li MY; Huang CM; Ko FH
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.