BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 33390904)

  • 1. The Parvalbumin Hypothesis of Autism Spectrum Disorder.
    Filice F; Janickova L; Henzi T; Bilella A; Schwaller B
    Front Cell Neurosci; 2020; 14():577525. PubMed ID: 33390904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes.
    Janickova L; Rechberger KF; Wey L; Schwaller B
    Mol Autism; 2020 Jun; 11(1):47. PubMed ID: 32517751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prenatal Valproate Exposure Differentially Affects Parvalbumin-Expressing Neurons and Related Circuits in the Cortex and Striatum of Mice.
    Lauber E; Filice F; Schwaller B
    Front Mol Neurosci; 2016; 9():150. PubMed ID: 28066177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulation of Parvalbumin Expression in the
    Lauber E; Filice F; Schwaller B
    Front Mol Neurosci; 2018; 11():262. PubMed ID: 30116174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities.
    Wöhr M; Orduz D; Gregory P; Moreno H; Khan U; Vörckel KJ; Wolfer DP; Welzl H; Gall D; Schiffmann SN; Schwaller B
    Transl Psychiatry; 2015 Mar; 5(3):e525. PubMed ID: 25756808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD).
    Filice F; Schwaller B; Michel TM; Grünblatt E
    Mol Autism; 2020 Jan; 11(1):10. PubMed ID: 32000856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism.
    Filice F; Vörckel KJ; Sungur AÖ; Wöhr M; Schwaller B
    Mol Brain; 2016 Jan; 9():10. PubMed ID: 26819149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parvalbumin-Deficiency Accelerates the Age-Dependent ROS Production in Pvalb Neurons
    Janickova L; Schwaller B
    Front Cell Neurosci; 2020; 14():571216. PubMed ID: 33132847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 17-β estradiol increases parvalbumin levels in
    Filice F; Lauber E; Vörckel KJ; Wöhr M; Schwaller B
    Mol Autism; 2018; 9():15. PubMed ID: 29507711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal and Early Postnatal Immune Activation Produce Dissociable Effects on Neurotransmission in mPFC-Amygdala Circuits.
    Li Y; Missig G; Finger BC; Landino SM; Alexander AJ; Mokler EL; Robbins JO; Manasian Y; Kim W; Kim KS; McDougle CJ; Carlezon WA; Bolshakov VY
    J Neurosci; 2018 Mar; 38(13):3358-3372. PubMed ID: 29491010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased parvalbumin mRNA levels in cerebellar Purkinje cells in autism.
    Soghomonian JJ; Zhang K; Reprakash S; Blatt GJ
    Autism Res; 2017 Nov; 10(11):1787-1796. PubMed ID: 28707805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Social impairments in mice lacking the voltage-gated potassium channel Kv3.1.
    Bee S; Ringland A; Coutellier L
    Behav Brain Res; 2021 Sep; 413():113468. PubMed ID: 34274375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletions of Cacna2d3 in parvalbumin-expressing neurons leads to autistic-like phenotypes in mice.
    Shao W; Zheng H; Zhu J; Li W; Li Y; Hu W; Zhang J; Jing L; Wang K; Jiang X
    Neurochem Int; 2023 Oct; 169():105569. PubMed ID: 37419212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroanatomical Alterations in the CNTNAP2 Mouse Model of Autism Spectrum Disorder.
    Gandhi T; Canepa CR; Adeyelu TT; Adeniyi PA; Lee CC
    Brain Sci; 2023 May; 13(6):. PubMed ID: 37371370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of amygdala-expressed genes associated with autism spectrum disorder.
    Herrero MJ; Velmeshev D; Hernandez-Pineda D; Sethi S; Sorrells S; Banerjee P; Sullivan C; Gupta AR; Kriegstein AR; Corbin JG
    Mol Autism; 2020 May; 11(1):39. PubMed ID: 32460837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NEXMIF/KIDLIA Knock-out Mouse Demonstrates Autism-Like Behaviors, Memory Deficits, and Impairments in Synapse Formation and Function.
    Gilbert J; O'Connor M; Templet S; Moghaddam M; Di Via Ioschpe A; Sinclair A; Zhu LQ; Xu W; Man HY
    J Neurosci; 2020 Jan; 40(1):237-254. PubMed ID: 31704787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resveratrol prevents long-term structural hippocampal alterations and modulates interneuron organization in an animal model of ASD.
    Santos-Terra J; Deckmann I; Schwingel GB; Paz AVC; Gama CS; Bambini-Junior V; Fontes-Dutra M; Gottfried C
    Brain Res; 2021 Oct; 1768():147593. PubMed ID: 34331907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence of spectrums: neuronal gene network states in autism spectrum disorder.
    Sullivan JM; De Rubeis S; Schaefer A
    Curr Opin Neurobiol; 2019 Dec; 59():102-111. PubMed ID: 31220745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the mechanisms underlying excitation/inhibition imbalance in human iPSC-derived models of ASD.
    Culotta L; Penzes P
    Mol Autism; 2020 May; 11(1):32. PubMed ID: 32393347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in Gene Expression in Autism Spectrum Disorders: An Extensive Review of Transcriptomic Studies.
    Ansel A; Rosenzweig JP; Zisman PD; Melamed M; Gesundheit B
    Front Neurosci; 2016; 10():601. PubMed ID: 28105001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.