These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 33391320)

  • 1. Genotyping-by-Sequencing Identifies Historical Breeding Stages of the Recently Domesticated American Cranberry.
    Diaz-Garcia L; Covarrubias-Pazaran G; Johnson-Cicalese J; Vorsa N; Zalapa J
    Front Plant Sci; 2020; 11():607770. PubMed ID: 33391320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pacbio Sequencing Reveals Identical Organelle Genomes between American Cranberry (
    Diaz-Garcia L; Rodriguez-Bonilla L; Rohde J; Smith T; Zalapa J
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30974783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome-Level Genome Assembly of the American Cranberry (
    Diaz-Garcia L; Garcia-Ortega LF; González-Rodríguez M; Delaye L; Iorizzo M; Zalapa J
    Front Plant Sci; 2021; 12():633310. PubMed ID: 33643360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic diversity and cultivar variants in the NCGR cranberry (
    Schlautman B; Covarrubias-Pazaran G; Rodriguez-Bonilla L; Hummer K; Bassil N; Smith T; Zalapa J
    J Genet; 2018 Dec; 97(5):1339-1351. PubMed ID: 30555082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a High-Density American Cranberry (
    Schlautman B; Covarrubias-Pazaran G; Diaz-Garcia L; Iorizzo M; Polashock J; Grygleski E; Vorsa N; Zalapa J
    G3 (Bethesda); 2017 Apr; 7(4):1177-1189. PubMed ID: 28250016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping.
    Covarrubias-Pazaran G; Diaz-Garcia L; Schlautman B; Deutsch J; Salazar W; Hernandez-Ochoa M; Grygleski E; Steffan S; Iorizzo M; Polashock J; Vorsa N; Zalapa J
    BMC Genomics; 2016 Jun; 17():451. PubMed ID: 27295982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting a reference cranberry genome to a crop wild relative provides insights into adaptation, domestication, and breeding.
    Kawash J; Colt K; Hartwick NT; Abramson BW; Vorsa N; Polashock JJ; Michael TP
    PLoS One; 2022; 17(3):e0264966. PubMed ID: 35255111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic-environmental associations in wild cranberry (Vaccinium macrocarpon Ait.).
    Neyhart JL; Kantar MB; Zalapa J; Vorsa N
    G3 (Bethesda); 2022 Sep; 12(10):. PubMed ID: 35944211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history.
    Li Y; Cao K; Zhu G; Fang W; Chen C; Wang X; Zhao P; Guo J; Ding T; Guan L; Zhang Q; Guo W; Fei Z; Wang L
    Genome Biol; 2019 Feb; 20(1):36. PubMed ID: 30791928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A global barley panel revealing genomic signatures of breeding in modern Australian cultivars.
    Hill CB; Angessa TT; Zhang XQ; Chen K; Zhou G; Tan C; Wang P; Westcott S; Li C
    Plant J; 2021 Apr; 106(2):419-434. PubMed ID: 33506596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Massive phenotyping of multiple cranberry populations reveals novel QTLs for fruit anthocyanin content and other important chemical traits.
    Diaz-Garcia L; Schlautman B; Covarrubias-Pazaran G; Maule A; Johnson-Cicalese J; Grygleski E; Vorsa N; Zalapa J
    Mol Genet Genomics; 2018 Dec; 293(6):1379-1392. PubMed ID: 29967963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of the internal structure and firmness in American cranberry (Vaccinium macrocarpon Ait.) fruit.
    Diaz-Garcia L; Rodriguez-Bonilla L; Phillips M; Lopez-Hernandez A; Grygleski E; Atucha A; Zalapa J
    PLoS One; 2019; 14(9):e0222451. PubMed ID: 31553750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.).
    Zhu H; Senalik D; McCown BH; Zeldin EL; Speers J; Hyman J; Bassil N; Hummer K; Simon PW; Zalapa JE
    Theor Appl Genet; 2012 Jan; 124(1):87-96. PubMed ID: 21904845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of a Resequenced Tomato Core Collection for Phenotypic and Genotypic Variation in Plant Growth and Fruit Quality Traits.
    Roohanitaziani R; de Maagd RA; Lammers M; Molthoff J; Meijer-Dekens F; van Kaauwen MPW; Finkers R; Tikunov Y; Visser RGF; Bovy AG
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33137951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide association study in quinoa reveals selection pattern typical for crops with a short breeding history.
    Patiranage DSR; Rey E; Emrani N; Wellman G; Schmid K; Schmöckel SM; Tester M; Jung C
    Elife; 2022 Jul; 11():. PubMed ID: 35801689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-trait analysis of domestication genes in Cicer arietinum - Cicer reticulatum hybrids with a multidimensional approach: Modeling wide crosses for crop improvement.
    Shin MG; Bulyntsev SV; Chang PL; Korbu LB; Carrasquila-Garcia N; Vishnyakova MA; Samsonova MG; Cook DR; Nuzhdin SV
    Plant Sci; 2019 Aug; 285():122-131. PubMed ID: 31203876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blueberry and cranberry pangenomes as a resource for future genetic studies and breeding efforts.
    Yocca AE; Platts A; Alger E; Teresi S; Mengist MF; Benevenuto J; Ferrão LFV; Jacobs M; Babinski M; Magallanes-Lundback M; Bayer P; Golicz A; Humann JL; Main D; Espley RV; Chagné D; Albert NW; Montanari S; Vorsa N; Polashock J; Díaz-Garcia L; Zalapa J; Bassil NV; Munoz PR; Iorizzo M; Edger PP
    Hortic Res; 2023 Nov; 10(11):uhad202. PubMed ID: 38023484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blueberry and cranberry pangenomes as a resource for future genetic studies and breeding efforts.
    Yocca AE; Platts A; Alger E; Teresi S; Mengist MF; Benevenuto J; Ferrão LFV; Jacobs M; Babinski M; Magallanes-Lundback M; Bayer P; Golicz A; Humann JL; Main D; Espley RV; Chagné D; Albert NW; Montanari S; Vorsa N; Polashock J; Díaz-Garcia L; Zalapa J; Bassil NV; Munoz PR; Iorizzo M; Edger PP
    bioRxiv; 2023 Aug; ():. PubMed ID: 37577683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. There and back again; historical perspective and future directions for
    Edger PP; Iorizzo M; Bassil NV; Benevenuto J; Ferrão LFV; Giongo L; Hummer K; Lawas LMF; Leisner CP; Li C; Munoz PR; Ashrafi H; Atucha A; Babiker EM; Canales E; Chagné D; DeVetter L; Ehlenfeldt M; Espley RV; Gallardo K; Günther CS; Hardigan M; Hulse-Kemp AM; Jacobs M; Lila MA; Luby C; Main D; Mengist MF; Owens GL; Perkins-Veazie P; Polashock J; Pottorff M; Rowland LJ; Sims CA; Song GQ; Spencer J; Vorsa N; Yocca AE; Zalapa J
    Hortic Res; 2022; 9():uhac083. PubMed ID: 35611183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Trait Loci Analysis and Marker Development for Fruit Rot Resistance in Cranberry Shows Potential Genetic Association with Epicuticular Wax.
    Kawash J; Erndwein L; Johnson-Cicalese J; Knowles S; Vorsa N; Polashock J
    Phytopathology; 2024 Jun; 114(6):1366-1372. PubMed ID: 38281162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.