These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33391352)
1. Predicting Rice Heading Date Using an Integrated Approach Combining a Machine Learning Method and a Crop Growth Model. Chen TS; Aoike T; Yamasaki M; Kajiya-Kanegae H; Iwata H Front Genet; 2020; 11():599510. PubMed ID: 33391352 [TBL] [Abstract][Full Text] [Related]
2. Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates. Onogi A; Watanabe M; Mochizuki T; Hayashi T; Nakagawa H; Hasegawa T; Iwata H Theor Appl Genet; 2016 Apr; 129(4):805-817. PubMed ID: 26791836 [TBL] [Abstract][Full Text] [Related]
3. Using genomic prediction with crop growth models enables the prediction of associated traits in wheat. Jighly A; Thayalakumaran T; O'Leary GJ; Kant S; Panozzo J; Aggarwal R; Hessel D; Forrest KL; Technow F; Tibbits JFG; Totir R; Hayden MJ; Munkvold J; Daetwyler HD J Exp Bot; 2023 Mar; 74(5):1389-1402. PubMed ID: 36205117 [TBL] [Abstract][Full Text] [Related]
4. Predicting rice phenology across China by integrating crop phenology model and machine learning. Zhang J; Lin X; Jiang C; Hu X; Liu B; Liu L; Xiao L; Zhu Y; Cao W; Tang L Sci Total Environ; 2024 Nov; 951():175585. PubMed ID: 39155002 [TBL] [Abstract][Full Text] [Related]
5. Integrating biophysical crop growth models and whole genome prediction for their mutual benefit: a case study in wheat phenology. Jighly A; Weeks A; Christy B; O'Leary GJ; Kant S; Aggarwal R; Hessel D; Forrest KL; Technow F; Tibbits JFG; Totir R; Spangenberg GC; Hayden MJ; Munkvold J; Daetwyler HD J Exp Bot; 2023 Aug; 74(15):4415-4426. PubMed ID: 37177829 [TBL] [Abstract][Full Text] [Related]
6. Days to heading, controlled by the heading date genes, Fujino K Breed Sci; 2020 Jun; 70(3):277-282. PubMed ID: 32714049 [TBL] [Abstract][Full Text] [Related]
7. Combining Crop Growth Modeling With Trait-Assisted Prediction Improved the Prediction of Genotype by Environment Interactions. Robert P; Le Gouis J; ; Rincent R Front Plant Sci; 2020; 11():827. PubMed ID: 32636859 [TBL] [Abstract][Full Text] [Related]
8. Establishment of a prediction model for the miRNA-based heading date characteristics of rice in the booting stage. Chen YC; Lin WS; Chen RK; Chao YY; Chin SW; Chen FC; Lee CY Genet Mol Res; 2015 Apr; 14(2):4381-90. PubMed ID: 25966211 [TBL] [Abstract][Full Text] [Related]
9. Genetic Properties Responsible for the Transgressive Segregation of Days to Heading in Rice. Koide Y; Sakaguchi S; Uchiyama T; Ota Y; Tezuka A; Nagano AJ; Ishiguro S; Takamure I; Kishima Y G3 (Bethesda); 2019 May; 9(5):1655-1662. PubMed ID: 30894452 [TBL] [Abstract][Full Text] [Related]
10. Accumulation of additive effects generates a strong photoperiod sensitivity in the extremely late-heading rice cultivar 'Nona Bokra'. Uga Y; Nonoue Y; Liang ZW; Lin HX; Yamamoto S; Yamanouchi U; Yano M Theor Appl Genet; 2007 May; 114(8):1457-66. PubMed ID: 17406851 [TBL] [Abstract][Full Text] [Related]
11. Coupling day length data and genomic prediction tools for predicting time-related traits under complex scenarios. Jarquin D; Kajiya-Kanegae H; Taishen C; Yabe S; Persa R; Yu J; Nakagawa H; Yamasaki M; Iwata H Sci Rep; 2020 Aug; 10(1):13382. PubMed ID: 32770083 [TBL] [Abstract][Full Text] [Related]
12. Automatic estimation of heading date of paddy rice using deep learning. Desai SV; Balasubramanian VN; Fukatsu T; Ninomiya S; Guo W Plant Methods; 2019; 15():76. PubMed ID: 31338116 [TBL] [Abstract][Full Text] [Related]
14. Detection of heading date QTLs in advanced-backcross populations of an elite Nonoue Y; Hori K; Ono N; Shibaya T; Ogiso-Tanaka E; Mizobuchi R; Fukuoka S; Yano M Breed Sci; 2019 Jun; 69(2):352-358. PubMed ID: 31481845 [TBL] [Abstract][Full Text] [Related]
15. Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models. Toda Y; Wakatsuki H; Aoike T; Kajiya-Kanegae H; Yamasaki M; Yoshioka T; Ebana K; Hayashi T; Nakagawa H; Hasegawa T; Iwata H PLoS One; 2020; 15(6):e0233951. PubMed ID: 32559220 [TBL] [Abstract][Full Text] [Related]
16. Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat. Bogard M; Hourcade D; Piquemal B; Gouache D; Deswartes JC; Throude M; Cohan JP J Exp Bot; 2021 Feb; 72(4):1085-1103. PubMed ID: 33068400 [TBL] [Abstract][Full Text] [Related]
17. [Analysis of photoperiod-sensitivity genes in Minghui63, an restorer line of indica rice(Oryza sativa L.)]. Luo LG; Xu JF; Zhai HQ; Wan JM Yi Chuan Xue Bao; 2003 Sep; 30(9):804-10. PubMed ID: 14577370 [TBL] [Abstract][Full Text] [Related]
18. Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari. Okada S; Onogi A; Iijima K; Hori K; Iwata H; Yokoyama W; Suehiro M; Yamasaki M Breed Sci; 2018 Mar; 68(2):210-218. PubMed ID: 29875604 [TBL] [Abstract][Full Text] [Related]
19. QTLs for heading date and plant height under multiple environments in rice. Han Z; Hu W; Tan C; Xing Y Genetica; 2017 Feb; 145(1):67-77. PubMed ID: 28070759 [TBL] [Abstract][Full Text] [Related]