BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33391460)

  • 1. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting.
    Yang GH; Kim W; Kim J; Kim G
    Theranostics; 2021; 11(1):48-63. PubMed ID: 33391460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration.
    Yeo M; Lee H; Kim GH
    Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation.
    Yeo M; Kim G
    Acta Biomater; 2020 Apr; 107():102-114. PubMed ID: 32142759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues.
    Kim W; Lee H; Lee J; Atala A; Yoo JJ; Lee SJ; Kim GH
    Biomaterials; 2020 Feb; 230():119632. PubMed ID: 31761486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Myoblast-Laden Collagen Bioink with Fully Aligned Au Nanowires for Muscle-Tissue Regeneration.
    Kim W; Jang CH; Kim GH
    Nano Lett; 2019 Dec; 19(12):8612-8620. PubMed ID: 31661283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Microfibrous Bundle Structure Fabricated Using an Electric Field-Assisted/Cell Printing Process for Muscle Tissue Regeneration.
    Yeo M; Kim G
    ACS Biomater Sci Eng; 2018 Feb; 4(2):728-738. PubMed ID: 33418760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Myogenic Activities Achieved through Blade-Casting-Assisted Bioprinting of Aligned Myoblasts Laden in Collagen Bioink.
    Lee S; Kim W; Kim G
    Biomacromolecules; 2023 Nov; 24(11):5219-5229. PubMed ID: 37917832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Maturation of 3D Bioprinted Skeletal Muscle Tissue Constructs Encapsulating Soluble Factor-Releasing Microparticles.
    de Barros NR; Darabi MA; Ma X; Diltemiz SE; Ermis M; Hassani Najafabadi A; Nadine S; Banton EA; Mandal K; Abbasgholizadeh R; Falcone N; Mano JF; Nasiri R; Herculano RD; Zhu Y; Ostrovidov S; Lee J; Kim HJ; Hosseini V; Dokmeci MR; Ahadian S; Khademhosseini A
    Macromol Biosci; 2023 Dec; 23(12):e2300276. PubMed ID: 37534566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink.
    Wu T; Gao YY; Su J; Tang XN; Chen Q; Ma LW; Zhang JJ; Wu JM; Wang SX
    Climacteric; 2022 Apr; 25(2):170-178. PubMed ID: 33993814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting.
    Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment.
    Ebrahimi M; Ostrovidov S; Salehi S; Kim SB; Bae H; Khademhosseini A
    J Tissue Eng Regen Med; 2018 Nov; 12(11):2151-2163. PubMed ID: 30048044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.