These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 33391691)
1. Reproductive and genetic roles of the maternal progenitor in the origin of common wheat ( Matsuoka Y; Mori N Ecol Evol; 2020 Dec; 10(24):13926-13937. PubMed ID: 33391691 [TBL] [Abstract][Full Text] [Related]
2. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. Matsuoka Y; Nasuda S; Ashida Y; Nitta M; Tsujimoto H; Takumi S; Kawahara T PLoS One; 2013; 8(8):e68310. PubMed ID: 23950867 [TBL] [Abstract][Full Text] [Related]
3. Unreduced gamete formation in wheat × Aegilops spp. hybrids is genotype specific and prevented by shared homologous subgenomes. Fakhri Z; Mirzaghaderi G; Ahmadian S; Mason AS Plant Cell Rep; 2016 May; 35(5):1143-54. PubMed ID: 26883221 [TBL] [Abstract][Full Text] [Related]
4. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Matsuoka Y; Nasuda S Theor Appl Genet; 2004 Nov; 109(8):1710-7. PubMed ID: 15448900 [TBL] [Abstract][Full Text] [Related]
5. The role of reproductive isolation in allopolyploid speciation patterns: empirical insights from the progenitors of common wheat. Matsuoka Y; Takumi S Sci Rep; 2017 Nov; 7(1):16004. PubMed ID: 29167543 [TBL] [Abstract][Full Text] [Related]
6. QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. Hao M; Luo J; Zeng D; Zhang L; Ning S; Yuan Z; Yan Z; Zhang H; Zheng Y; Feuillet C; Choulet F; Yen Y; Zhang L; Liu D G3 (Bethesda); 2014 Aug; 4(10):1943-53. PubMed ID: 25128436 [TBL] [Abstract][Full Text] [Related]
7. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. Wang J; Luo MC; Chen Z; You FM; Wei Y; Zheng Y; Dvorak J New Phytol; 2013 May; 198(3):925-937. PubMed ID: 23374069 [TBL] [Abstract][Full Text] [Related]
8. Production of synthetic wheat lines to exploit the genetic diversity of emmer wheat and D genome containing Aegilops species in wheat breeding. Mirzaghaderi G; Abdolmalaki Z; Ebrahimzadegan R; Bahmani F; Orooji F; Majdi M; Mozafari AA Sci Rep; 2020 Nov; 10(1):19698. PubMed ID: 33184344 [TBL] [Abstract][Full Text] [Related]
9. Development and characterization of Zuo Y; Xiang Q; Dai S; Song Z; Bao T; Hao M; Zhang L; Liu G; Li J; Liu D; Wei Y; Zheng Y; Yan Z Genome; 2020 May; 63(5):263-273. PubMed ID: 32160479 [No Abstract] [Full Text] [Related]
10. The origin of the B-genome of bread wheat (Triticum aestivum L.). Haider N Genetika; 2013 Mar; 49(3):303-14. PubMed ID: 23755530 [TBL] [Abstract][Full Text] [Related]
11. Exploring the alpha-gliadin locus: the 33-mer peptide with six overlapping coeliac disease epitopes in Triticum aestivum is derived from a subgroup of Aegilops tauschii. Schaart JG; Salentijn EMJ; Goryunova SV; Chidzanga C; Esselink DG; Gosman N; Bentley AR; Gilissen LJWJ; Smulders MJM Plant J; 2021 Apr; 106(1):86-94. PubMed ID: 33369792 [TBL] [Abstract][Full Text] [Related]
12. Production of intergeneric hybrid between dwarfing polish wheat (Triticum polonicum L.) and Aegilops tauschii Cosson. with reference to wheat origin. Kang HY; Wang Y; Yuan HJ; Jiang Y; Zhou YH Genetika; 2009 Jun; 45(6):766-72. PubMed ID: 19639868 [TBL] [Abstract][Full Text] [Related]
13. Chromosome stability of synthetic Triticum turgidum-Aegilops umbellulata hybrids. Song Z; Zuo Y; Li W; Dai S; Liu G; Pu Z; Yan Z BMC Plant Biol; 2024 May; 24(1):391. PubMed ID: 38735929 [TBL] [Abstract][Full Text] [Related]
14. Hypersensitive response-like reaction is associated with hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii coss. Mizuno N; Hosogi N; Park P; Takumi S PLoS One; 2010 Jun; 5(6):e11326. PubMed ID: 20593003 [TBL] [Abstract][Full Text] [Related]
15. Chromosomal structural changes and microsatellite variations in newly synthesized hexaploid wheat mediated by unreduced gametes. Li H; Wang Y; Guo X; Du Y; Wang C; Ji W J Genet; 2016 Dec; 95(4):819-830. PubMed ID: 27994180 [TBL] [Abstract][Full Text] [Related]
16. Additive genetic variance and covariance between relatives in synthetic wheat crosses with variable parental ploidy levels. Puhl LE; Crossa J; Munilla S; Pérez-Rodríguez P; Cantet RJC Genetics; 2021 Feb; 217(2):. PubMed ID: 33724416 [TBL] [Abstract][Full Text] [Related]
17. Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Matsuoka Y; Takumi S; Kawahara T Theor Appl Genet; 2007 Aug; 115(4):509-18. PubMed ID: 17639301 [TBL] [Abstract][Full Text] [Related]
18. Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution. Gogniashvili M; Jinjikhadze T; Maisaia I; Akhalkatsi M; Kotorashvili A; Kotaria N; Beridze T; Dudnikov AJ Curr Genet; 2016 Nov; 62(4):791-798. PubMed ID: 26923563 [TBL] [Abstract][Full Text] [Related]
19. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. Zhang L; Luo JT; Hao M; Zhang LQ; Yuan ZW; Yan ZH; Liu YX; Zhang B; Liu BL; Liu CJ; Zhang HG; Zheng YL; Liu DC BMC Genet; 2012 Aug; 13():69. PubMed ID: 22888829 [TBL] [Abstract][Full Text] [Related]
20. Variation in abscisic acid responsiveness of Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity. Iehisa JC; Takumi S Genes Genet Syst; 2012; 87(1):9-18. PubMed ID: 22531790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]