These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 33392190)

  • 41. Ca
    Wang X; Zheng W
    FASEB J; 2019 Jun; 33(6):6697-6712. PubMed ID: 30848934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondrial regulation of synaptic plasticity in the hippocampus.
    Levy M; Faas GC; Saggau P; Craigen WJ; Sweatt JD
    J Biol Chem; 2003 May; 278(20):17727-34. PubMed ID: 12604600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held.
    Singh M; Denny H; Smith C; Granados J; Renden R
    J Physiol; 2018 Dec; 596(24):6263-6287. PubMed ID: 30285293
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mitochondria and Synaptic Plasticity in the Mature and Aging Nervous System.
    Todorova V; Blokland A
    Curr Neuropharmacol; 2017; 15(1):166-173. PubMed ID: 27075203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death?
    Sullivan PG; Rabchevsky AG; Waldmeier PC; Springer JE
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):231-9. PubMed ID: 15573402
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium Signaling Deficits in Glia and Autophagic Pathways Contributing to Neurodegenerative Disease.
    Mustaly-Kalimi S; Littlefield AM; Stutzmann GE
    Antioxid Redox Signal; 2018 Oct; 29(12):1158-1175. PubMed ID: 29634342
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mitochondrial calcium signaling, regulation, and cellular functions: A novel target for therapeutic medicine in neurological disorders.
    Bagheri-Mohammadi S; Farjami M; Suha AJ; Zarch SMA; Najafi S; Esmaeili A
    J Cell Biochem; 2023 May; 124(5):635-655. PubMed ID: 37158125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overexpression of human mutated G93A SOD1 changes dynamics of the ER mitochondria calcium cycle specifically in mouse embryonic motor neurons.
    Lautenschläger J; Prell T; Ruhmer J; Weidemann L; Witte OW; Grosskreutz J
    Exp Neurol; 2013 Sep; 247():91-100. PubMed ID: 23578819
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A modified calcium retention capacity assay clarifies the roles of extra- and intracellular calcium pools in mitochondrial permeability transition pore opening.
    Harisseh R; Abrial M; Chiari P; Al-Mawla R; Villedieu C; Tessier N; Bidaux G; Ovize M; Gharib A
    J Biol Chem; 2019 Oct; 294(42):15282-15292. PubMed ID: 31434742
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impaired presynaptic cytosolic and mitochondrial calcium dynamics in aged compared to young adult hippocampal CA1 synapses ameliorated by calcium chelation.
    Tonkikh AA; Carlen PL
    Neuroscience; 2009 Apr; 159(4):1300-8. PubMed ID: 19215725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The gain-of-function enhancement of IP3-receptor channel gating by familial Alzheimer's disease-linked presenilin mutants increases the open probability of mitochondrial permeability transition pore.
    Toglia P; Ullah G
    Cell Calcium; 2016 Jul; 60(1):13-24. PubMed ID: 27184076
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coupled transmembrane mechanisms control MCU-mediated mitochondrial Ca
    Vais H; Payne R; Paudel U; Li C; Foskett JK
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21731-21739. PubMed ID: 32801213
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development or disease: duality of the mitochondrial permeability transition pore.
    Pérez MJ; Quintanilla RA
    Dev Biol; 2017 Jun; 426(1):1-7. PubMed ID: 28457864
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ca(2+) clearance by plasmalemmal NCLX, Li(+)-permeable Na(+)/Ca(2+) exchanger, is required for the sustained exocytosis in rat insulinoma INS-1 cells.
    Han YE; Ryu SY; Park SH; Lee KH; Lee SH; Ho WK
    Pflugers Arch; 2015 Dec; 467(12):2461-72. PubMed ID: 26100674
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer's disease.
    Pérez MJ; Ponce DP; Aranguiz A; Behrens MI; Quintanilla RA
    Redox Biol; 2018 Oct; 19():290-300. PubMed ID: 30199818
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiology and pathology of calcium signaling in the brain.
    Kawamoto EM; Vivar C; Camandola S
    Front Pharmacol; 2012; 3():61. PubMed ID: 22518105
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurement of calcium buffering by intracellular organelles in brain.
    Kodavanti PR
    Methods Mol Med; 1999; 22():171-6. PubMed ID: 21380833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Allosteric Regulation of NCLX by Mitochondrial Membrane Potential Links the Metabolic State and Ca
    Kostic M; Katoshevski T; Sekler I
    Cell Rep; 2018 Dec; 25(12):3465-3475.e4. PubMed ID: 30566870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes.
    Odagiri K; Katoh H; Kawashima H; Tanaka T; Ohtani H; Saotome M; Urushida T; Satoh H; Hayashi H
    J Mol Cell Cardiol; 2009 Jun; 46(6):989-97. PubMed ID: 19318235
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception.
    Nita II; Caspi Y; Gudes S; Fishman D; Lev S; Hersfinkel M; Sekler I; Binshtok AM
    Biochim Biophys Acta; 2016 Dec; 1863(12):2868-2880. PubMed ID: 27627464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.