These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 33392870)
1. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates. Ai M; Zhu Y; Jia X World J Microbiol Biotechnol; 2021 Jan; 37(1):2. PubMed ID: 33392870 [TBL] [Abstract][Full Text] [Related]
2. [Progress on the biosynthesis of medium-chain-length polyhydroxyalkanoates by microorganisms]. Yan Q; Li Y; Chen J; Du GC Sheng Wu Gong Cheng Xue Bao; 2001 Sep; 17(5):485-90. PubMed ID: 11797205 [TBL] [Abstract][Full Text] [Related]
3. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity. Manso Cobos I; Ibáñez García MI; de la Peña Moreno F; Sáez Melero LP; Luque-Almagro VM; Castillo Rodríguez F; Roldán Ruiz MD; Prieto Jiménez MA; Moreno Vivián C Microb Cell Fact; 2015 Jun; 14():77. PubMed ID: 26055753 [TBL] [Abstract][Full Text] [Related]
4. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Muangwong A; Boontip T; Pachimsawat J; Napathorn SC Microb Cell Fact; 2016 Mar; 15():55. PubMed ID: 26988857 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. Kim DY; Kim HW; Chung MG; Rhee YH J Microbiol; 2007 Apr; 45(2):87-97. PubMed ID: 17483792 [TBL] [Abstract][Full Text] [Related]
6. Mcl-PHAs produced by Pseudomonas sp. Gl01 using fed-batch cultivation with waste rapeseed oil as carbon source. Mozejko J; Wilke A; Przybyłek G; Ciesielski S J Microbiol Biotechnol; 2012 Mar; 22(3):371-7. PubMed ID: 22450793 [TBL] [Abstract][Full Text] [Related]
7. Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose-Xylose Mixtures. Zhu Y; Ai M; Jia X Front Bioeng Biotechnol; 2021; 9():794331. PubMed ID: 35083203 [TBL] [Abstract][Full Text] [Related]
8. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Urtuvia V; Villegas P; González M; Seeger M Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981 [TBL] [Abstract][Full Text] [Related]
9. Tailor-Made Polyhydroxyalkanoates by Reconstructing Pseudomonas Entomophila. Li M; Ma Y; Zhang X; Zhang L; Chen X; Ye JW; Chen GQ Adv Mater; 2021 Oct; 33(41):e2102766. PubMed ID: 34322928 [TBL] [Abstract][Full Text] [Related]
10. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. Choi SY; Cho IJ; Lee Y; Kim YJ; Kim KJ; Lee SY Adv Mater; 2020 Sep; 32(35):e1907138. PubMed ID: 32249983 [TBL] [Abstract][Full Text] [Related]
11. [Engineering progress in microbial production of polyhydroxyalkanoates]. Yuan K; Zhou W; Peng C; Tang T; Wang Q; Tang W; An T; Chen B; Liu H; Wu L; Li Y; Tong Y Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):384-394. PubMed ID: 33645142 [TBL] [Abstract][Full Text] [Related]
12. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Kang DK; Lee CR; Lee SH; Bae JH; Park YK; Rhee YH; Sung BH; Sohn JH J Microbiol Biotechnol; 2017 May; 27(5):990-994. PubMed ID: 28274100 [TBL] [Abstract][Full Text] [Related]
14. Pulsed feeding strategy is more favorable to medium-chain-length polyhydroxyalkanoates production from waste rapeseed oil. Możejko J; Ciesielski S Biotechnol Prog; 2014; 30(5):1243-6. PubMed ID: 24729589 [TBL] [Abstract][Full Text] [Related]
15. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Ene N; Savoiu VG; Spiridon M; Paraschiv CI; Vamanu E Curr Pharm Des; 2023; 29(39):3089-3102. PubMed ID: 38099526 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993 [TBL] [Abstract][Full Text] [Related]
17. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers. Zhuang Q; Qi Q Microb Cell Fact; 2019 Aug; 18(1):135. PubMed ID: 31409350 [TBL] [Abstract][Full Text] [Related]
18. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum. Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812 [TBL] [Abstract][Full Text] [Related]
19. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis. Możejko-Ciesielska J; Mostek A Microb Cell Fact; 2019 May; 18(1):93. PubMed ID: 31138236 [TBL] [Abstract][Full Text] [Related]
20. [Biodegradation of polyhydroxyalkanoates by soil microbiocoenoses of different structures and detection of microorganisms-destructors]. Boiandin AN; Prudnikova SV; Filipenko ML; Khrapov EA; Vasil'ev AD; Volova TG Prikl Biokhim Mikrobiol; 2012; 48(1):35-44. PubMed ID: 22567883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]