These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33392872)

  • 1. Ampicillin used in aseptic processing influences the production of pigments and fatty acids in Chlorella sorokiniana.
    Wang W; Sheng Y
    World J Microbiol Biotechnol; 2021 Jan; 37(1):3. PubMed ID: 33392872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo transcriptome analysis of Chlorella sorokiniana: effect of glucose assimilation, and moderate light intensity.
    Azaman SNA; Wong DCJ; Tan SW; Yusoff FM; Nagao N; Yeap SK
    Sci Rep; 2020 Oct; 10(1):17331. PubMed ID: 33060668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.
    Sun Z; Chen YF; Du J
    Plant Biotechnol J; 2016 Feb; 14(2):557-66. PubMed ID: 25973988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression concerning fatty acid and amino acid metabolism in Chlorella vulgaris cultured with antibiotics.
    Wang W; Sheng Y
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):8025-8036. PubMed ID: 32794019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light.
    Xie X; Huang A; Gu W; Zang Z; Pan G; Gao S; He L; Zhang B; Niu J; Lin A; Wang G
    New Phytol; 2016 Feb; 209(3):987-98. PubMed ID: 26439434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Analysis of microRNAs in
    Azaman SNA; Satharasinghe DA; Tan SW; Nagao N; Yusoff FM; Yeap SK
    Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32992970
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects and mechanisms of decabromodiphenyl ethane on Chlorella sorokiniana: Transcriptomics, proteins and fatty acid production.
    Wang W; Sheng Y
    Mar Environ Res; 2022 Nov; 181():105764. PubMed ID: 36209704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixotrophic metabolism of Chlorella sorokiniana and algal-bacterial consortia under extended dark-light periods and nutrient starvation.
    Alcántara C; Fernández C; García-Encina PA; Muñoz R
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2393-404. PubMed ID: 25341398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and Genetic Regulation for High Lipid Accumulation by
    Zou S; Huang Z; Wu X; Yu X
    Microbiol Spectr; 2022 Oct; 10(5):e0039422. PubMed ID: 36200894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana.
    Kumar K; Banerjee D; Das D
    Bioresour Technol; 2014; 152():225-33. PubMed ID: 24292202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.
    Miazek K; Remacle C; Richel A; Goffin D
    Bioresour Technol; 2017 Apr; 230():122-131. PubMed ID: 28187341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes.
    Luo J; Shi Q; Niu L; Zhang Y
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28230761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus.
    Vigeolas H; Duby F; Kaymak E; Niessen G; Motte P; Franck F; Remacle C
    J Biotechnol; 2012 Nov; 162(1):3-12. PubMed ID: 22480533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles: A new holistic understanding of hidden ecotoxicological aspect of pollutants.
    Behzadi Tayemeh M; Esmailbeigi M; Shirdel I; Joo HS; Johari SA; Banan A; Nourani H; Mashhadi H; Jami MJ; Tabarrok M
    Chemosphere; 2020 Jan; 238():124576. PubMed ID: 31421462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana.
    Schmidt KC; Jackrel SL; Smith DJ; Dick GJ; Denef VJ
    Harmful Algae; 2020 Nov; 99():101939. PubMed ID: 33218432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes.
    Lu S; Wang J; Niu Y; Yang J; Zhou J; Yuan Y
    Biotechnol Bioeng; 2012 Jul; 109(7):1651-62. PubMed ID: 22252441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model.
    Imase M; Watanabe K; Aoyagi H; Tanaka H
    FEMS Microbiol Ecol; 2008 Mar; 63(3):273-82. PubMed ID: 18269632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya.
    Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R
    BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between chlorophyll and the carotenoids in the algal flagellate, Euglena.
    WOLKEN JJ; MELLON AD
    J Gen Physiol; 1956 May; 39(5):675-85. PubMed ID: 13319655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study.
    León-Vaz A; Romero LC; Gotor C; León R; Vigara J
    Ecotoxicol Environ Saf; 2021 Jan; 207():111301. PubMed ID: 32949933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.