These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33392948)

  • 21. iLBE for Computational Identification of Linear B-cell Epitopes by Integrating Sequence and Evolutionary Features.
    Hasan MM; Khatun MS; Kurata H
    Genomics Proteomics Bioinformatics; 2020 Oct; 18(5):593-600. PubMed ID: 33099033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of reversibly oxidized protein cysteine thiols using protein structure properties.
    Sanchez R; Riddle M; Woo J; Momand J
    Protein Sci; 2008 Mar; 17(3):473-81. PubMed ID: 18287280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NTpred: a robust and precise machine learning framework for in silico identification of Tyrosine nitration sites in protein sequences.
    Datta S; Nabeel Asim M; Dengel A; Ahmed S
    Brief Funct Genomics; 2024 Mar; 23(2):163-179. PubMed ID: 37248673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome.
    Hasan MM; Manavalan B; Khatun MS; Kurata H
    Int J Biol Macromol; 2020 Aug; 157():752-758. PubMed ID: 31805335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of serine phosphorylation sites mapping on Schizosaccharomyces Pombe by fusing three encoding schemes with the random forest classifier.
    Tasmia SA; Kibria MK; Tuly KF; Islam MA; Khatun MS; Hasan MM; Mollah MNH
    Sci Rep; 2022 Feb; 12(1):2632. PubMed ID: 35173235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NeuroPpred-Fuse: an interpretable stacking model for prediction of neuropeptides by fusing sequence information and feature selection methods.
    Jiang M; Zhao B; Luo S; Wang Q; Chu Y; Chen T; Mao X; Liu Y; Wang Y; Jiang X; Wei DQ; Xiong Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34396388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens.
    Charoenkwan P; Schaduangrat N; Shoombuatong W
    BMC Bioinformatics; 2023 Jul; 24(1):301. PubMed ID: 37507654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct determination of the redox status of cysteine residues in proteins in vivo.
    Hara S; Tatenaka Y; Ohuchi Y; Hisabori T
    Biochem Biophys Res Commun; 2015 Jan; 456(1):339-43. PubMed ID: 25436431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pCysMod: Prediction of Multiple Cysteine Modifications Based on Deep Learning Framework.
    Li S; Yu K; Wu G; Zhang Q; Wang P; Zheng J; Liu ZX; Wang J; Gao X; Cheng H
    Front Cell Dev Biol; 2021; 9():617366. PubMed ID: 33732693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cy-preds: An algorithm and a web service for the analysis and prediction of cysteine reactivity.
    Soylu İ; Marino SM
    Proteins; 2016 Feb; 84(2):278-91. PubMed ID: 26685111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines.
    Tsai CH; Chen BJ; Chan CH; Liu HL; Kao CY
    Bioinformatics; 2005 Dec; 21(24):4416-9. PubMed ID: 16223789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SPAR: a random forest-based predictor for self-interacting proteins with fine-grained domain information.
    Liu X; Yang S; Li C; Zhang Z; Song J
    Amino Acids; 2016 Jul; 48(7):1655-65. PubMed ID: 27074717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stack-DHUpred: Advancing the accuracy of dihydrouridine modification sites detection via stacking approach.
    Harun-Or-Roshid M; Maeda K; Phan LT; Manavalan B; Kurata H
    Comput Biol Med; 2024 Feb; 169():107848. PubMed ID: 38145601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.
    Hasan MM; Guo D; Kurata H
    Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A feature-based approach to predict hot spots in protein-DNA binding interfaces.
    Zhang S; Zhao L; Zheng CH; Xia J
    Brief Bioinform; 2020 May; 21(3):1038-1046. PubMed ID: 30957840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput identification of catalytic redox-active cysteine residues.
    Fomenko DE; Xing W; Adair BM; Thomas DJ; Gladyshev VN
    Science; 2007 Jan; 315(5810):387-9. PubMed ID: 17234949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.