These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 33392948)
41. GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features. Hasan MM; Kurata H PLoS One; 2018; 13(10):e0200283. PubMed ID: 30312302 [TBL] [Abstract][Full Text] [Related]
42. Meta-iPVP: a sequence-based meta-predictor for improving the prediction of phage virion proteins using effective feature representation. Charoenkwan P; Nantasenamat C; Hasan MM; Shoombuatong W J Comput Aided Mol Des; 2020 Oct; 34(10):1105-1116. PubMed ID: 32557165 [TBL] [Abstract][Full Text] [Related]
43. Predicting S-nitrosylation proteins and sites by fusing multiple features. Qiu WR; Wang QK; Guan MY; Jia JH; Xiao X Math Biosci Eng; 2021 Oct; 18(6):9132-9147. PubMed ID: 34814339 [TBL] [Abstract][Full Text] [Related]
44. iPreny-PseAAC: Identify C-terminal Cysteine Prenylation Sites in Proteins by Incorporating Two Tiers of Sequence Couplings into PseAAC. Xu Y; Wang Z; Li C; Chou KC Med Chem; 2017; 13(6):544-551. PubMed ID: 28425870 [TBL] [Abstract][Full Text] [Related]
45. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins. Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553 [TBL] [Abstract][Full Text] [Related]
46. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids. Xu Y; Ding J; Wu LY PLoS One; 2016; 11(4):e0154237. PubMed ID: 27104833 [TBL] [Abstract][Full Text] [Related]
47. diSBPred: A machine learning based approach for disulfide bond prediction. Mishra A; Kabir MWU; Hoque MT Comput Biol Chem; 2021 Apr; 91():107436. PubMed ID: 33550156 [TBL] [Abstract][Full Text] [Related]
48. MSLoc-DT: a new method for predicting the protein subcellular location of multispecies based on decision templates. Zhang SW; Liu YF; Yu Y; Zhang TH; Fan XN Anal Biochem; 2014 Mar; 449():164-71. PubMed ID: 24361712 [TBL] [Abstract][Full Text] [Related]
50. iPGK-PseAAC: Identify Lysine Phosphoglycerylation Sites in Proteins by Incorporating Four Different Tiers of Amino Acid Pairwise Coupling Information into the General PseAAC. Liu LM; Xu Y; Chou KC Med Chem; 2017; 13(6):552-559. PubMed ID: 28521678 [TBL] [Abstract][Full Text] [Related]
51. Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou's pseudo amino acid composition. Jia C; Lin X; Wang Z Int J Mol Sci; 2014 Jun; 15(6):10410-23. PubMed ID: 24918295 [TBL] [Abstract][Full Text] [Related]
52. PGluS: prediction of protein S-glutathionylation sites with multiple features and analysis. Zhao X; Ning Q; Ai M; Chai H; Yin M Mol Biosyst; 2015 Mar; 11(3):923-9. PubMed ID: 25599514 [TBL] [Abstract][Full Text] [Related]
53. Global methods to monitor the thiol-disulfide state of proteins in vivo. Leichert LI; Jakob U Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668 [TBL] [Abstract][Full Text] [Related]
54. Fast Prediction of Protein Methylation Sites Using a Sequence-Based Feature Selection Technique. Wei L; Xing P; Shi G; Ji Z; Zou Q IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1264-1273. PubMed ID: 28222000 [TBL] [Abstract][Full Text] [Related]
55. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Wei L; Zhou C; Su R; Zou Q Bioinformatics; 2019 Nov; 35(21):4272-4280. PubMed ID: 30994882 [TBL] [Abstract][Full Text] [Related]
56. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information. Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607 [TBL] [Abstract][Full Text] [Related]
57. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information. Ali F; Ahmed S; Swati ZNK; Akbar S J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959 [TBL] [Abstract][Full Text] [Related]
58. pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments. Khan YD; Jamil M; Hussain W; Rasool N; Khan SA; Chou KC J Theor Biol; 2019 Feb; 463():47-55. PubMed ID: 30550863 [TBL] [Abstract][Full Text] [Related]
59. Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition. Zhao X; Ning Q; Ai M; Chai H; Yang G J Theor Biol; 2016 Jun; 398():96-102. PubMed ID: 27025952 [TBL] [Abstract][Full Text] [Related]
60. Antigenic: An improved prediction model of protective antigens. Rahman MS; Rahman MK; Saha S; Kaykobad M; Rahman MS Artif Intell Med; 2019 Mar; 94():28-41. PubMed ID: 30871681 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]