BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 33393282)

  • 21. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
    Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL
    Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of silk fibroin/hyaluronic acid hydrogels with enhanced mechanical performance by a combination of physical and enzymatic crosslinking.
    Qu X; Yan L; Liu S; Tan Y; Xiao J; Cao Y; Chen K; Xiao W; Li B; Liao X
    J Biomater Sci Polym Ed; 2021 Aug; 32(12):1635-1653. PubMed ID: 34004124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold.
    Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C
    Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigations into the role of non-bond interaction on gelation mechanism of silk fibroin hydrogel.
    Jiang X; Zheng L; Zeng J; Wu H; Zhang J
    Math Biosci Eng; 2021 May; 18(4):4071-4083. PubMed ID: 34198426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autonomous Self-Healing Silk Fibroin Injectable Hydrogels Formed via Surfactant-Free Hydrophobic Association.
    Meng L; Shao C; Cui C; Xu F; Lei J; Yang J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1628-1639. PubMed ID: 31800210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Injectable Ultrasonication-Induced Silk Fibroin Hydrogel for Cartilage Repair and Regeneration.
    Yuan T; Li Z; Zhang Y; Shen K; Zhang X; Xie R; Liu F; Fan W
    Tissue Eng Part A; 2021 Sep; 27(17-18):1213-1224. PubMed ID: 33353462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering.
    Zhou Y; Liang K; Zhao S; Zhang C; Li J; Yang H; Liu X; Yin X; Chen D; Xu W; Xiao P
    Int J Biol Macromol; 2018 Mar; 108():383-390. PubMed ID: 29225174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Absorbent Silk Fibroin Protein Xerogel.
    Cheng K; Tao X; Qi Z; Yin Z; Kundu SC; Lu S
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3594-3607. PubMed ID: 34308644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and properties of silk hydrogels.
    Kim UJ; Park J; Li C; Jin HJ; Valluzzi R; Kaplan DL
    Biomacromolecules; 2004; 5(3):786-92. PubMed ID: 15132662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stretchable silk fibroin hydrogels.
    Oral CB; Yetiskin B; Okay O
    Int J Biol Macromol; 2020 Oct; 161():1371-1380. PubMed ID: 32791264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amorphous Silk Fibroin Nanofiber Hydrogels with Enhanced Mechanical Properties.
    Liu J; Ding Z; Lu G; Wang J; Wang L; Lu Q
    Macromol Biosci; 2019 Dec; 19(12):e1900326. PubMed ID: 31738015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silk granular hydrogels self-reinforced with regenerated silk fibroin fibers.
    Wyss CS; Karami P; Demongeot A; Bourban PE; Pioletti DP
    Soft Matter; 2021 Jul; 17(29):7038-7046. PubMed ID: 34251015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diepoxide-triggered conformational transition of silk fibroin: formation of hydrogels.
    Karakutuk I; Ak F; Okay O
    Biomacromolecules; 2012 Apr; 13(4):1122-8. PubMed ID: 22360530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering sulfated polysaccharides and silk fibroin based injectable IPN hydrogels with stiffening and growth factor presentation abilities for cartilage tissue engineering.
    Dixit A; Mahajan A; Saxena R; Chakraborty S; Katti DS
    Biomater Sci; 2024 Apr; 12(8):2067-2085. PubMed ID: 38470831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-crosslinked in-situ forming alginate/silk fibroin hydrogel with potential for bone tissue engineering.
    Ghorbani M; Vasheghani-Farahani E; Azarpira N; Hashemi-Najafabadi S; Ghasemi A
    Biomater Adv; 2023 Oct; 153():213565. PubMed ID: 37542914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzyme-Mediated Conjugation of Peptides to Silk Fibroin for Facile Hydrogel Functionalization.
    McGill M; Grant JM; Kaplan DL
    Ann Biomed Eng; 2020 Jul; 48(7):1905-1915. PubMed ID: 32314301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cooperative Assembly of a Peptide Gelator and Silk Fibroin Afford an Injectable Hydrogel for Tissue Engineering.
    Cheng B; Yan Y; Qi J; Deng L; Shao ZW; Zhang KQ; Li B; Sun Z; Li X
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12474-12484. PubMed ID: 29584396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust Silk Protein Hydrogels Made by a Facile One-Step Method and Their Multiple Applications.
    Chen L; Sun L; Yao J; Zhao B; Shao Z; Chen X
    ACS Appl Bio Mater; 2022 Jun; 5(6):3086-3094. PubMed ID: 35608071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of hydrogel scaffolds via photocrosslinking of methacrylated silk fibroin.
    Bessonov IV; Rochev YA; Arkhipova АY; Kopitsyna MN; Bagrov DV; Karpushkin EA; Bibikova TN; Moysenovich AM; Soldatenko AS; Nikishin II; Kotliarova MS; Bogush VG; Shaitan KV; Moisenovich MM
    Biomed Mater; 2019 Mar; 14(3):034102. PubMed ID: 30726780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Programing Performance of Silk Fibroin Superstrong Scaffolds by Mesoscopic Regulation among Hierarchical Structures.
    Zhang Y; Tu H; Wu R; Patil A; Hou C; Lin Z; Meng Z; Ma L; Yu R; Yu W; Liu XY
    Biomacromolecules; 2020 Oct; 21(10):4169-4179. PubMed ID: 32909737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.