These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3339344)

  • 1. Morphological and neurochemical effects of diazepam and phenobarbital on selective culture of neurons from fetal rat brain.
    Daval JL; De Vasconcelos AP; Lartaud I
    J Neurochem; 1988 Mar; 50(3):665-72. PubMed ID: 3339344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of meprobamate and phenobarbital upon local cerebral glucose utilization: parallelism with effects of the anxiolytic diazepam.
    Ableitner A; Herz A
    Brain Res; 1987 Feb; 403(1):82-8. PubMed ID: 3828817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-selective effects of adenosine A1 receptor ligands on energy metabolism and macromolecular biosynthesis in cultured central neurons.
    Daval JL; Nicolas F
    Biochem Pharmacol; 1998 Jan; 55(2):141-9. PubMed ID: 9448736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term effects of diazepam and phenobarbital treatment during development on GABA receptors, transporters and glutamic acid decarboxylase.
    Raol YH; Zhang G; Budreck EC; Brooks-Kayal AR
    Neuroscience; 2005; 132(2):399-407. PubMed ID: 15802192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glucose starvation on glucose transport in neuronal cells in primary culture from rat brain.
    Hara M; Matsuda Y; Okumura N; Hirai K; Nakagawa H
    J Neurochem; 1989 Mar; 52(3):909-12. PubMed ID: 2918314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of glucose transport in neuronal cells and astrocytes from rat brain in primary culture.
    Hara M; Matsuda Y; Hirai K; Okumura N; Nakagawa H
    J Neurochem; 1989 Mar; 52(3):902-8. PubMed ID: 2537381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of deoxyglucose uptake by adrenocorticotropic hormone in cultured neurons.
    Daval JL; Anglard P; Gerard MJ; Vincendon G; Louis JC
    J Cell Physiol; 1985 Jul; 124(1):75-80. PubMed ID: 2995412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeine-diazepam interaction and local cerebral glucose utilization in the conscious rat.
    Nehlig A; Daval JL; Pereira de Vasconcelos A; Boyet S
    Brain Res; 1987 Sep; 419(1-2):272-8. PubMed ID: 3676730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anchorage dependent changes in transport of glucose, adenosine, uridine and leucine in 3T3 cells.
    Otsuka H; Moskowitz M
    J Cell Physiol; 1975 Oct; 86(2 PT 2 SUPPL 1):379-87. PubMed ID: 1194374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of diazepam and phenobarbital on electrically-induced amygdaloid seizures and seizure development.
    Wise RA; Chinerman J
    Exp Neurol; 1974 Nov; 45(2):355-63. PubMed ID: 4607787
    [No Abstract]   [Full Text] [Related]  

  • 11. Glucose uptake in brain during withdrawal from ethanol, phenobarbital, and diazepam.
    Marietta CA; Eckardt MJ; Campbell GA; Majchrowicz E; Weight FF
    Alcohol Clin Exp Res; 1986 Jun; 10(3):233-6. PubMed ID: 3526942
    [No Abstract]   [Full Text] [Related]  

  • 12. Consequences of chronic phenobarbital treatment on local cerebral glucose utilization in the developing rat.
    Pereira de Vasconcelos A; Boyet S; Nehlig A
    Brain Res Dev Brain Res; 1990 May; 53(2):168-78. PubMed ID: 2357789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of anticonvulsant drugs on brain cultures from chick embryos: a comparison with cultures from embryos treated in ovo.
    Sedowofia SK; Clayton RM
    Teratog Carcinog Mutagen; 1985; 5(3):205-17. PubMed ID: 2866603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [
    Dienel GA; Cruz NF; Sokoloff L; Driscoll BF
    Neurochem Res; 2017 Jan; 42(1):50-63. PubMed ID: 26141225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radioelectroencephalography (Tele-Stereo-EEG) in the rat as a pharmacological model to differentiate the central action of flupirtine from that of opiates, diazepam and phenobarbital.
    Dimpfel W; Spüler M; Nickel B
    Neuropsychobiology; 1986; 16(2-3):163-8. PubMed ID: 3587575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sexually dimorphic influence of prenatal exposure to diazepam on behavioral responses to environmental challenge and on gamma-aminobutyric acid (GABA)-stimulated chloride uptake in the brain.
    Kellogg CK; Primus RJ; Bitran D
    J Pharmacol Exp Ther; 1991 Jan; 256(1):259-65. PubMed ID: 1846417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of diphenylhydantoin, phenobarbital, and diazepam on the penicillin-induced epileptogenic focus in the rat.
    Edmonds HL; Stark LG; Hollinger MA
    Exp Neurol; 1974 Nov; 45(2):377-86. PubMed ID: 4213819
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of ACTH and diazepam on the uptake of tritiated uridine into brain, muscles and liver of infant rats.
    Jakoubek B; Hájek I
    Physiol Bohemoslov; 1976; 25(4):301-7. PubMed ID: 185636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of neurotrophin regulation of human and rat neuropeptide Y (NPY) neurons: induction of NPY production in aggregate cultures derived from rat but not from human fetal brains.
    Barnea A; Aguila-Mansilla N; Chute HT; Welcher AA
    Brain Res; 1996 Sep; 732(1-2):52-60. PubMed ID: 8891268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of early chronic phenobarbital treatment on the maturation of energy metabolism in the developing rat brain. I. Incorporation of glucose carbon into amino acids.
    Pereira de Vasconcelos A; Nehlig A
    Brain Res; 1987 Dec; 433(2):219-29. PubMed ID: 3690333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.