These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 3339356)
1. Kinetic characterization of inhibition of gamma-aminobutyric acid uptake into cultured neurons and astrocytes by 4,4-diphenyl-3-butenyl derivatives of nipecotic acid and guvacine. Larsson OM; Falch E; Krogsgaard-Larsen P; Schousboe A J Neurochem; 1988 Mar; 50(3):818-23. PubMed ID: 3339356 [TBL] [Abstract][Full Text] [Related]
2. Effect of homo-beta-proline and other heterocyclic GABA analogues on GABA uptake in neurons and astroglial cells and on GABA receptor binding. Larsson OM; Thorbek P; Krogsgaard-Larsen P; Schousboe A J Neurochem; 1981 Dec; 37(6):1509-16. PubMed ID: 6278078 [TBL] [Abstract][Full Text] [Related]
3. Anticonvulsant action in the epileptic gerbil of novel inhibitors of GABA uptake. Löscher W Eur J Pharmacol; 1985 Mar; 110(1):103-8. PubMed ID: 4007046 [TBL] [Abstract][Full Text] [Related]
4. Ion dependency of uptake and release of GABA and (RS)-nipecotic acid studied in cultured mouse brain cortex neurons. Larsson OM; Drejer J; Hertz L; Schousboe A J Neurosci Res; 1983; 9(3):291-302. PubMed ID: 6854668 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the anticonvulsant effects of two novel GABA uptake inhibitors and diazepam in amygdaloid kindled rats. Schwark WS; Löscher W Naunyn Schmiedebergs Arch Pharmacol; 1985 Jun; 329(4):367-71. PubMed ID: 4033806 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of novel GABA uptake inhibitors. 3. Diaryloxime and diarylvinyl ether derivatives of nipecotic acid and guvacine as anticonvulsant agents. Knutsen LJ; Andersen KE; Lau J; Lundt BF; Henry RF; Morton HE; Naerum L; Petersen H; Stephensen H; Suzdak PD; Swedberg MD; Thomsen C; Sørensen PO J Med Chem; 1999 Sep; 42(18):3447-62. PubMed ID: 10479278 [TBL] [Abstract][Full Text] [Related]
7. The synthesis of novel GABA uptake inhibitors. 1. Elucidation of the structure-activity studies leading to the choice of (R)-1-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic acid (tiagabine) as an anticonvulsant drug candidate. Andersen KE; Braestrup C; Grønwald FC; Jørgensen AS; Nielsen EB; Sonnewald U; Sørensen PO; Suzdak PD; Knutsen LJ J Med Chem; 1993 Jun; 36(12):1716-25. PubMed ID: 8510100 [TBL] [Abstract][Full Text] [Related]
8. Coexistence of carriers for dopamine and GABA uptake on a same nerve terminal in the rat brain. Bonanno G; Raiteri M Br J Pharmacol; 1987 May; 91(1):237-43. PubMed ID: 3594080 [TBL] [Abstract][Full Text] [Related]
9. Uptake of GABA and nipecotic acid in astrocytes and neurons in primary cultures: changes in the sodium coupling ratio during differentiation. Larsson OM; Hertz L; Schousboe A J Neurosci Res; 1986; 16(4):699-708. PubMed ID: 3025461 [TBL] [Abstract][Full Text] [Related]
10. Structure-activity studies on benzhydrol-containing nipecotic acid and guvacine derivatives as potent, orally-active inhibitors of GABA uptake. Pavia MR; Lobbestael SJ; Nugiel D; Mayhugh DR; Gregor VE; Taylor CP; Schwarz RD; Brahce L; Vartanian MG J Med Chem; 1992 Oct; 35(22):4238-48. PubMed ID: 1433224 [TBL] [Abstract][Full Text] [Related]
11. Inhibitors of the GABA uptake systems. Krogsgaard-Larsen P Mol Cell Biochem; 1980 Jun; 31(2):105-21. PubMed ID: 6251361 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of the high-affinity, net uptake of GABA into cultured astrocytes by beta-proline, nipecotic acid and other compounds. Schousboe A; Krogsgaard-Larsen P; Svenneby G; Hertz L Brain Res; 1978 Sep; 153(3):623-6. PubMed ID: 698802 [No Abstract] [Full Text] [Related]
13. Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. White HS; Sarup A; Bolvig T; Kristensen AS; Petersen G; Nelson N; Pickering DS; Larsson OM; Frølund B; Krogsgaard-Larsen P; Schousboe A J Pharmacol Exp Ther; 2002 Aug; 302(2):636-44. PubMed ID: 12130726 [TBL] [Abstract][Full Text] [Related]
14. GABA uptake inhibitors containing mono- and diarylmethoxyalkyl N-substituents. Falch E; Krogsgaard-Larsen P Drug Des Deliv; 1989 May; 4(3):205-15. PubMed ID: 2535204 [TBL] [Abstract][Full Text] [Related]
15. Biochemical and behavioral studies following subchronic administration of GABA uptake inhibitors in mice. Karbon EW; Enna SJ; Ferkany JW Neuropharmacology; 1991 Nov; 30(11):1187-92. PubMed ID: 1663595 [TBL] [Abstract][Full Text] [Related]
17. Comparison between (RS)-nipecotic acid and GABA transport in cultured astrocytes: coupling with two sodium ions. Larsson OM; Schousboe A Neurochem Res; 1981 Mar; 6(3):257-66. PubMed ID: 7279105 [TBL] [Abstract][Full Text] [Related]
18. Cholinergic nerve terminals of human cerebral cortex possess a GABA transporter whose activation induces release of acetylcholine. Bonanno G; Ruelle A; Andrioli GC; Raiteri M Brain Res; 1991 Jan; 539(2):191-5. PubMed ID: 2054596 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of L-carnitine uptake into primary rat cortical cell cultures by GABA and GABA uptake blockers. Virmani MA; Conti R; Spadoni A; Rossi S; Arrigoni-Martelli E Pharmacol Res; 1995; 31(3-4):211-5. PubMed ID: 7630861 [TBL] [Abstract][Full Text] [Related]