These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nucleation and Growth Kinetics of ZnO Nanoparticles Studied by in Situ Microfluidic SAXS/WAXS/UV-Vis Experiments. Herbst M; Hofmann E; Förster S Langmuir; 2019 Sep; 35(36):11702-11709. PubMed ID: 31403801 [TBL] [Abstract][Full Text] [Related]
3. Self-Confined Nucleation of Iron Oxide Nanoparticles in a Nanostructured Amorphous Precursor. Baumgartner J; Ramamoorthy RK; Freitas AP; Neouze MA; Bennet M; Faivre D; Carriere D Nano Lett; 2020 Jul; 20(7):5001-5007. PubMed ID: 32551668 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous SAXS/WAXS/UV-Vis Study of the Nucleation and Growth of Nanoparticles: A Test of Classical Nucleation Theory. Chen X; Schröder J; Hauschild S; Rosenfeldt S; Dulle M; Förster S Langmuir; 2015 Oct; 31(42):11678-91. PubMed ID: 26393805 [TBL] [Abstract][Full Text] [Related]
5. Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation. Jun YS; Zhu Y; Wang Y; Ghim D; Wu X; Kim D; Jung H Annu Rev Phys Chem; 2022 Apr; 73():453-477. PubMed ID: 35113740 [TBL] [Abstract][Full Text] [Related]
6. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics. Mozaffari S; Li W; Thompson C; Ivanov S; Seifert S; Lee B; Kovarik L; Karim AM Nanoscale; 2017 Sep; 9(36):13772-13785. PubMed ID: 28885633 [TBL] [Abstract][Full Text] [Related]
7. In situ high-energy synchrotron radiation study of boehmite formation, growth, and phase transformation to alumina in sub- and supercritical water. Lock N; Bremholm M; Christensen M; Almer J; Chen YS; Iversen BB Chemistry; 2009 Dec; 15(48):13381-90. PubMed ID: 19882596 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces. Jun YS; Kim D; Neil CW Acc Chem Res; 2016 Sep; 49(9):1681-90. PubMed ID: 27513685 [TBL] [Abstract][Full Text] [Related]
9. In situ observations of nanoparticle early development kinetics at mineral-water interfaces. Jun YS; Lee B; Waychunas GA Environ Sci Technol; 2010 Nov; 44(21):8182-9. PubMed ID: 20932004 [TBL] [Abstract][Full Text] [Related]
10. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering. Lassenberger A; Grünewald TA; van Oostrum PDJ; Rennhofer H; Amenitsch H; Zirbs R; Lichtenegger HC; Reimhult E Chem Mater; 2017 May; 29(10):4511-4522. PubMed ID: 28572705 [TBL] [Abstract][Full Text] [Related]
11. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381 [TBL] [Abstract][Full Text] [Related]
12. Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease. Skrdla PJ Langmuir; 2012 Mar; 28(10):4842-57. PubMed ID: 22324463 [TBL] [Abstract][Full Text] [Related]
13. An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals. Pokratath R; Lermusiaux L; Checchia S; Mathew JP; Cooper SR; Mathiesen JK; Landaburu G; Banerjee S; Tao S; Reichholf N; Billinge SJL; Abécassis B; Jensen KMØ; De Roo J ACS Nano; 2023 May; 17(9):8796-8806. PubMed ID: 37093055 [TBL] [Abstract][Full Text] [Related]
14. Solvent manipulation of the pre-reduction metal-ligand complex and particle-ligand binding for controlled synthesis of Pd nanoparticles. Li W; Taylor MG; Bayerl D; Mozaffari S; Dixit M; Ivanov S; Seifert S; Lee B; Shanaiah N; Lu Y; Kovarik L; Mpourmpakis G; Karim AM Nanoscale; 2021 Jan; 13(1):206-217. PubMed ID: 33325939 [TBL] [Abstract][Full Text] [Related]
15. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering. Liu Q; Gao MR; Liu Y; Okasinski JS; Ren Y; Sun Y Nano Lett; 2016 Jan; 16(1):715-20. PubMed ID: 26625184 [TBL] [Abstract][Full Text] [Related]
16. The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. Mozaffari S; Li W; Dixit M; Seifert S; Lee B; Kovarik L; Mpourmpakis G; Karim AM Nanoscale Adv; 2019 Oct; 1(10):4052-4066. PubMed ID: 36132098 [TBL] [Abstract][Full Text] [Related]
17. In Situ Atomic-Scale Study of Particle-Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation. Li J; Chen J; Wang H; Chen N; Wang Z; Guo L; Deepak FL Adv Sci (Weinh); 2018 Jun; 5(6):1700992. PubMed ID: 29938178 [TBL] [Abstract][Full Text] [Related]
18. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. Dahal N; García S; Zhou J; Humphrey SM ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897 [TBL] [Abstract][Full Text] [Related]
19. A SAXS/WAXS XAFS study of crystallisation in cordierite glass. Greaves GN; Bras W; Oversluizen M; Clark SM Faraday Discuss; 2003; 122():299-314; discussion 381-93. PubMed ID: 12555864 [TBL] [Abstract][Full Text] [Related]
20. The role of pre-nucleation clusters in the crystallization of gold nanoparticles. Ramamoorthy RK; Yildirim E; Barba E; Roblin P; Vargas JA; Lacroix LM; Rodriguez-Ruiz I; Decorse P; Petkov V; Teychené S; Viau G Nanoscale; 2020 Aug; 12(30):16173-16188. PubMed ID: 32701100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]