These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33393771)

  • 1. Revealing the Critical Role of Probe Grafting Density in Nanometric Confinement in Ionic Signal via an Experimental and Theoretical Study.
    Ma Q; Liu T; Xu R; Du Q; Gao P; Xia F
    Anal Chem; 2021 Feb; 93(4):1984-1990. PubMed ID: 33393771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing Ionic Signal Enhancement with Probe Grafting Density on the Outer Surface of Nanochannels.
    Liu T; Wu X; Xu H; Ma Q; Du Q; Yuan Q; Gao P; Xia F
    Anal Chem; 2021 Sep; 93(38):13054-13062. PubMed ID: 34519478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay of electrostatic repulsion and surface grafting density on surface-mediated DNA hybridization.
    Traeger JC; Schwartz DK
    J Colloid Interface Sci; 2020 Apr; 566():369-374. PubMed ID: 32018176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous Trends in Nucleic Acid-Based Electrochemical Biosensors with Nanoporous Gold Electrodes.
    Veselinovic J; Almashtoub S; Seker E
    Anal Chem; 2019 Sep; 91(18):11923-11931. PubMed ID: 31429540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmotic flow velocity in DNA modified nanochannels.
    Li J; Li D
    J Colloid Interface Sci; 2019 Oct; 553():31-39. PubMed ID: 31181468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exponential Increase in an Ionic Signal: A Dominant Role of the Space Charge Effect on the Outer Surface of Nanochannels.
    Wu X; Li Y; Xu H; Chen Y; Mao H; Ma Q; Du Q; Gao P; Xia F
    Anal Chem; 2021 Oct; 93(40):13711-13718. PubMed ID: 34581576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids.
    Sun Z; Liao T; Zhang Y; Shu J; Zhang H; Zhang GJ
    Biosens Bioelectron; 2016 Dec; 86():194-201. PubMed ID: 27372572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Curvature Nanostructuring Enhances Probe Display for Biomolecular Detection.
    De Luna P; Mahshid SS; Das J; Luan B; Sargent EH; Kelley SO; Zhou R
    Nano Lett; 2017 Feb; 17(2):1289-1295. PubMed ID: 28075594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical grafting of a DNA intercalator probe onto functional iron oxide nanoparticles: a physicochemical study.
    Bouffier L; Yiu HH; Rosseinsky MJ
    Langmuir; 2011 May; 27(10):6185-92. PubMed ID: 21488618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor.
    Lubin AA; Hunt BV; White RJ; Plaxco KW
    Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High capacity substrates as a platform for a DNA probe array genotyping assay.
    Fidanza J; Glazer M; Mutnick D; McGall G; Frank C
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):533-8. PubMed ID: 11563070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels.
    Tagliazucchi M; Szleifer I
    J Am Chem Soc; 2015 Oct; 137(39):12539-51. PubMed ID: 26368839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive impedimetric DNA biosensor with poly(amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA.
    Zhu N; Gao H; Xu Q; Lin Y; Su L; Mao L
    Biosens Bioelectron; 2010 Feb; 25(6):1498-503. PubMed ID: 19963366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nanochannel array based device for determination of the isoelectric point of confined proteins.
    Gao HL; Li CY; Ma FX; Wang K; Xu JJ; Chen HY; Xia XH
    Phys Chem Chem Phys; 2012 Jul; 14(26):9460-7. PubMed ID: 22652811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes.
    Zhang J; Song S; Zhang L; Wang L; Wu H; Pan D; Fan C
    J Am Chem Soc; 2006 Jul; 128(26):8575-80. PubMed ID: 16802824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructured arrays with pre-synthesized capture probes for DNA detection based on metal nanoparticles and silver enhancement.
    Zhang GJ; Möller R; Kretschmer R; Csáki A; Fritzsche W
    J Fluoresc; 2004 Jul; 14(4):369-75. PubMed ID: 15617379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy.
    Keighley SD; Li P; Estrela P; Migliorato P
    Biosens Bioelectron; 2008 Mar; 23(8):1291-7. PubMed ID: 18178423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Oligonucleotide Grafting Density on Surface-Mediated DNA Transport and Hybridization.
    Traeger JC; Lamberty Z; Schwartz DK
    ACS Nano; 2019 Jul; 13(7):7850-7859. PubMed ID: 31244029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment.
    Ali M; Neumann R; Ensinger W
    ACS Nano; 2010 Dec; 4(12):7267-74. PubMed ID: 21082785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.