These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 333949)

  • 1. Heterogeneity of intracortical peritubular plasma flow in the rat kidney.
    Coelho JB
    Am J Physiol; 1977 Oct; 233(4):F333-41. PubMed ID: 333949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient and nonnutrient renal blood flow.
    Young JS; Passmore JC; Hartupee DA; Baker CH
    J Lab Clin Med; 1990 Jun; 115(6):680-7. PubMed ID: 2114469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of renal vasodilatation on intrarenal blood flow distribution.
    Rosivall L; Fazekas A; Pósch E; Szabó G; Hársing L
    Acta Physiol Acad Sci Hung; 1979; 53(4):399-408. PubMed ID: 546041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of extraluminal tubular deposition of ferrocyanide to peritubular perfusion rate in cortical and medullary nephron segments of the rat kidney.
    Coelho JB; Chien KC; Stella SR; Bradley SE
    Circ Res; 1971 Jul; 29(1):21-8. PubMed ID: 4934828
    [No Abstract]   [Full Text] [Related]  

  • 5. Intrarenal distribution of renal blood flow in the rat.
    Rosivall L; Pósch E; Simon G; László E; Hársing L
    Acta Physiol Acad Sci Hung; 1979; 53(4):389-97. PubMed ID: 317553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incomplete and flow dependent extraction of 86Rb in the rat kidney. Errors in local flow estimation.
    Rosivall L; Hope A; Clausen G
    Pflugers Arch; 1981 Jun; 390(3):216-8. PubMed ID: 7196019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal medullary blood flow studied with the 86-Rb extraction method. Methodological considerations.
    Karlberg L; Källskog O; Ojteg G; Wolgast M
    Acta Physiol Scand; 1982 May; 115(1):11-8. PubMed ID: 7136796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-dissection analysis of 133Xe distribution to measure regional renal blood flow.
    Passmore JC; Allen RL; Hock CE; Neiberger RE
    Am J Physiol; 1983 May; 244(5):F574-8. PubMed ID: 6342417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle blood flow and 86Rb extraction: 86Rb as a capillary flow indicator.
    Friedman JJ
    Am J Physiol; 1968 Mar; 214(3):488-93. PubMed ID: 5638980
    [No Abstract]   [Full Text] [Related]  

  • 10. Renal blood flow as measured with 133Xe wash out and 86Rb uptake techniques and with an electromagnetic flowmeter.
    Hársing L; Pósch E; Rosivall L; Szabó G
    Acta Med Acad Sci Hung; 1975; 32(3-4):239-44. PubMed ID: 139816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood flow dependence of postglomerular fluid transfer and glomerulotubular balance.
    Kon V; Hughes ML; Ichikawa I
    J Clin Invest; 1983 Nov; 72(5):1716-28. PubMed ID: 6630522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of countercurrent diffusion exchange in blood vessels of the renal medulla.
    Marsh DJ; Segel LA
    Am J Physiol; 1971 Sep; 221(3):817-28. PubMed ID: 5570338
    [No Abstract]   [Full Text] [Related]  

  • 13. Evaluation of methods of measuring glomerular and nutrient blood flow in rat kidneys.
    Yarger WE; Boyd MA; Schrader NW
    Am J Physiol; 1978 Nov; 235(5):H592-600. PubMed ID: 727280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin.
    Steiner RW; Tucker BJ; Blantz RC
    J Clin Invest; 1979 Aug; 64(2):503-12. PubMed ID: 457865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of regional distribution of renal blood flow using quantitative autoradiography.
    Geraghty JG; Nsubuga M; Angerson WJ; Williams NN; Sarazen AA; Dervan PA; Fitzpatrick JM
    Am J Physiol; 1992 Nov; 263(5 Pt 2):F958-62. PubMed ID: 1443184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Albumin permeability of the peritubular capillaries in rat renal cortex.
    Bell DR; Pinter GG; Wilson PD
    J Physiol; 1978 Jun; 279():621-40. PubMed ID: 671365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acute unilateral renal denervation in the rat.
    Bello-Reuss E; Colindres RE; Pastoriza-Muñoz E; Mueller RA; Gottschalk CW
    J Clin Invest; 1975 Jul; 56(1):208-17. PubMed ID: 1141432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Na+-K+ pump stimulation by K+ in cortical collecting tubules: a mechanism for early renal K+ adaptation.
    Fujii Y; Katz AI
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F595-601. PubMed ID: 2552833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced renal outer medullary uptake of mercury associated with uninephrectomy: implication of a luminal mechanism.
    Zalups RK
    J Toxicol Environ Health; 1997 Feb; 50(2):173-94. PubMed ID: 9048960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules.
    Schafer JA; Troutman SL
    Am J Physiol; 1986 Jun; 250(6 Pt 2):F1063-72. PubMed ID: 3717348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.