BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33394932)

  • 1. In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
    Lan G; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography.
    Vantipalli S; Li J; Singh M; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2018 Apr; 95(4):299-308. PubMed ID: 29561496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography.
    Singh M; Li J; Han Z; Wu C; Aglyamov SR; Twa MD; Larin KV
    J Refract Surg; 2016 Aug; 32(8):562-7. PubMed ID: 27505317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute alcohol consumption modulates corneal biomechanical properties as revealed by optical coherence elastography.
    Mekonnen TT; Zevallos-Delgado C; Hatami M; Singh M; Aglyamov SR; Larin KV
    J Biomech; 2024 May; 169():112155. PubMed ID: 38761746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea.
    Sun MG; Son T; Crutison J; Guaiquil V; Lin S; Nammari L; Klatt D; Yao X; Rosenblatt MI; Royston TJ
    J Mech Behav Biomed Mater; 2022 Apr; 128():105100. PubMed ID: 35121423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo measurement of shear modulus of the human cornea using optical coherence elastography.
    Ramier A; Eltony AM; Chen Y; Clouser F; Birkenfeld JS; Watts A; Yun SH
    Sci Rep; 2020 Oct; 10(1):17366. PubMed ID: 33060714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo noninvasive measurement of spatially resolved corneal elasticity in human eyes using Lamb wave optical coherence elastography.
    Jin Z; Chen S; Dai Y; Bao C; Ye S; Zhou Y; Wang Y; Huang S; Wang Y; Shen M; Zhu D; Lu F
    J Biophotonics; 2020 Aug; 13(8):e202000104. PubMed ID: 32368840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers.
    Zvietcovich F; Pongchalee P; Meemon P; Rolland JP; Parker KJ
    Nat Commun; 2019 Oct; 10(1):4895. PubMed ID: 31653846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography.
    Manapuram RK; Aglyamov SR; Monediado FM; Mashiatulla M; Li J; Emelianov SY; Larin KV
    J Biomed Opt; 2012 Oct; 17(10):100501. PubMed ID: 23223976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration.
    Lan G; Gu B; Larin KV; Twa MD
    Transl Vis Sci Technol; 2020 Apr; 9(5):3. PubMed ID: 32821475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Optical Coherence Elastography Unveils Spatial Variation of Human Corneal Stiffness.
    Li GY; Feng X; Yun SH
    IEEE Trans Biomed Eng; 2024 May; 71(5):1418-1429. PubMed ID: 38032780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does group velocity always reflect elastic modulus in shear wave elastography?
    Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo.
    Li J; Wang S; Manapuram RK; Singh M; Menodiado FM; Aglyamov S; Emelianov S; Twa MD; Larin KV
    J Biomed Opt; 2013 Dec; 18(12):121503. PubMed ID: 24089292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal biomechanics: Measurement and structural correlations.
    Chong J; Dupps WJ
    Exp Eye Res; 2021 Apr; 205():108508. PubMed ID: 33609511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serial biomechanical comparison of edematous, normal, and collagen crosslinked human donor corneas using optical coherence elastography.
    Ford MR; Sinha Roy A; Rollins AM; Dupps WJ
    J Cataract Refract Surg; 2014 Jun; 40(6):1041-7. PubMed ID: 24767794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncontact Acoustic Micro-Tapping Optical Coherence Elastography for Quantification of Corneal Anisotropic Elasticity: In Vivo Rabbit Study.
    Kirby MA; Regnault G; Pelivanov I; O'Donnell M; Wang RK; Shen TT
    Transl Vis Sci Technol; 2023 Mar; 12(3):15. PubMed ID: 36930138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heartbeat optical coherence elastography: corneal biomechanics in vivo.
    Nair A; Singh M; Aglyamov S; Larin KV
    J Biomed Opt; 2021 Feb; 26(2):. PubMed ID: 33624461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial mapping of corneal biomechanical properties using wave-based optical coherence elastography.
    Wang Q; Chen Y; Shen K; Zhou X; Shen M; Lu F; Zhu D
    J Biophotonics; 2024 Jun; 17(6):e202300534. PubMed ID: 38453148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-Static Optical Coherence Elastography to Characterize Human Corneal Biomechanical Properties.
    Kling S; Torres-Netto EA; Spiru B; Sekundo W; Hafezi F
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):29. PubMed ID: 32539132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.