These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33395299)

  • 1. Uncovering a Universal Molecular Mechanism of Salt Ion Adsorption at Solid/Water Interfaces.
    Misra RP; Blankschtein D
    Langmuir; 2021 Jan; 37(2):722-733. PubMed ID: 33395299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.
    McCaffrey DL; Nguyen SC; Cox SJ; Weller H; Alivisatos AP; Geissler PL; Saykally RJ
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13369-13373. PubMed ID: 28827359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-charge effects on ion adsorption near aqueous interfaces.
    Son CY; Wang ZG
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33947813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing charge and size effects of ions at the graphene-electrolyte interface using polarizable force field simulations.
    H H; Mewada R; Mallajosyula SS
    Nanoscale Adv; 2023 Jan; 5(3):796-804. PubMed ID: 36756506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular polarizability in open ensemble simulations of aqueous nanoconfinements under electric field.
    Moučka F; Zamfir S; Bratko D; Luzar A
    J Chem Phys; 2019 Apr; 150(16):164702. PubMed ID: 31042910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarizability effects in molecular dynamics simulations of the graphene-water interface.
    Ho TA; Striolo A
    J Chem Phys; 2013 Feb; 138(5):054117. PubMed ID: 23406108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiers Memorial Lecture. Ions at aqueous interfaces.
    Jungwirth P
    Faraday Discuss; 2009; 141():9-30; discussion 81-98. PubMed ID: 19227348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale Simulation of the Interaction and Adsorption of Ions on a Hydrophobic Graphene Surface.
    Chen L; Guo Y; Xu Z; Yang X
    Chemphyschem; 2018 Nov; 19(21):2954-2960. PubMed ID: 30142233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Salt-Induced Charge Screening on AOT Adsorption to the Planar and Nanoemulsion Oil-Water Interfaces.
    Carpenter AP; Foster MJ; Jones KK; Richmond GL
    Langmuir; 2021 Jul; 37(29):8658-8666. PubMed ID: 34260854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D structure of the electric double layer of ionic liquid-alcohol mixtures at the electrochemical interface.
    Otero-Mato JM; Montes-Campos H; Cabeza O; Diddens D; Ciach A; Gallego LJ; Varela LM
    Phys Chem Chem Phys; 2018 Dec; 20(48):30412-30427. PubMed ID: 30500015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water response to intense electric fields: A molecular dynamics study.
    Marracino P; Liberti M; d'Inzeo G; Apollonio F
    Bioelectromagnetics; 2015 Jul; 36(5):377-85. PubMed ID: 25877041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ions at hydrophobic interfaces.
    Levin Y; dos Santos AP
    J Phys Condens Matter; 2014 May; 26(20):203101. PubMed ID: 24769502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water Electric Field Induced Modulation of the Wetting of Hexagonal Boron Nitride: Insights from Multiscale Modeling of Many-Body Polarization.
    Luo S; Misra RP; Blankschtein D
    ACS Nano; 2024 Jan; 18(2):1629-1646. PubMed ID: 38169482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential dependence of the ionic structure at the ionic liquid/water interface studied using MD simulation.
    Ishii K; Sakka T; Nishi N
    Phys Chem Chem Phys; 2021 Oct; 23(39):22367-22374. PubMed ID: 34608475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impart of Heterogeneous Charge Polarization and Distribution on Friction at Water-Graphene Interfaces: a Density-Functional-Theory based Machine Learning Study.
    Li H; Guo W; Guo Y
    J Phys Chem Lett; 2024 Jun; 15(25):6585-6591. PubMed ID: 38885449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of liquid-liquid interfaces in an electric field: The water-1,2-dichloroethane interface.
    Raiteri P; Kraus P; Gale JD
    J Chem Phys; 2020 Oct; 153(16):164714. PubMed ID: 33138425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ions Tune Interfacial Water Structure and Modulate Hydrophobic Interactions at Silica Surfaces.
    Tuladhar A; Dewan S; Pezzotti S; Brigiano FS; Creazzo F; Gaigeot MP; Borguet E
    J Am Chem Soc; 2020 Apr; 142(15):6991-7000. PubMed ID: 32233477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanisms of ion adsorption to aqueous interfaces: air-water vs. oil-water.
    Devlin SW; Benjamin I; Saykally RJ
    Proc Natl Acad Sci U S A; 2022 Oct; 119(42):e2210857119. PubMed ID: 36215494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of magnesium ions with pristine single-layer and defected graphene/water interfaces studied by second harmonic generation.
    Achtyl JL; Vlassiouk IV; Surwade SP; Fulvio PF; Dai S; Geiger FM
    J Phys Chem B; 2014 Jul; 118(28):7739-49. PubMed ID: 24517192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.