BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 33395564)

  • 1. Disassembly sequence planning of waste auto parts.
    Mao J; Hong D; Chen Z; Changhai M; Weiwen L; Wang J
    J Air Waste Manag Assoc; 2021 May; 71(5):607-619. PubMed ID: 33395564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid evolutionary algorithm for stochastic multiobjective disassembly line balancing problem in remanufacturing.
    Tian G; Zhang X; Fathollahi-Fard AM; Jiang Z; Zhang C; Yuan G; Pham DT
    Environ Sci Pollut Res Int; 2023 Apr; ():. PubMed ID: 37118384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Predicting the Recycling Potential and Evaluating the Environmental Benefits of Waste Electrical and Electronic Equipment in Beijing-Tianjin-Hebei].
    Chen P; Shi XQ
    Huan Jing Ke Xue; 2020 Apr; 41(4):1976-1986. PubMed ID: 32608707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network modeling for reverse flows of end-of-life vehicles.
    Ene S; Öztürk N
    Waste Manag; 2015 Apr; 38():284-96. PubMed ID: 25659298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on the Evolutionary Game of Construction and Demolition Waste (CDW) Recycling Units' Green Behavior, Considering Remanufacturing Capability.
    Li X; Huang R; Dai J; Li J; Shen Q
    Int J Environ Res Public Health; 2021 Sep; 18(17):. PubMed ID: 34501858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification and characterization of recovered materials in the cycle of the informal household electronic waste dismantling in Buriram province, Thailand: A challenge towards sustainable management and circular economy.
    Thongkaow P; Prueksasit T; Siriwong W
    Waste Manag Res; 2022 Dec; 40(12):1766-1776. PubMed ID: 35723614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development potential of e-waste recycling industry in China.
    Li J; Yang J; Liu L
    Waste Manag Res; 2015 Jun; 33(6):533-42. PubMed ID: 25990983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application and planning of an energy-oriented stochastic disassembly line balancing problem.
    Zhang X; Zhou H; Fu C; Mi M; Zhan C; Pham DT; Fathollahi-Fard AM
    Environ Sci Pollut Res Int; 2023 May; ():1-15. PubMed ID: 37222888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lexicographic Multiobjective Scatter Search for the Optimization of Sequence-Dependent Selective Disassembly Subject to Multiresource Constraints.
    Guo X; Zhou M; Liu S; Qi L
    IEEE Trans Cybern; 2020 Jul; 50(7):3307-3317. PubMed ID: 30932856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The end-of-life power battery recycling & remanufacturing center location-adjustment problem considering battery capacity and quantity uncertainty.
    Du Y; Zhou Y; Jia D; Li X
    J Environ Manage; 2024 Apr; 357():120774. PubMed ID: 38569265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of end-of-life vehicle recycling: Remanufacturing waste sheet steel into mesh sheet.
    Abdullah ZT
    PLoS One; 2021; 16(12):e0261079. PubMed ID: 34874959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and optimization for noise-aversion and energy-awareness disassembly sequence planning problems in reverse supply chain.
    Liang P; Fu Y; Ni S; Zheng B
    Environ Sci Pollut Res Int; 2021 May; ():. PubMed ID: 34014476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development and prospects of the end-of-life vehicle recycling system in Taiwan.
    Chen KC; Huang SH; Lian IW
    Waste Manag; 2010; 30(8-9):1661-9. PubMed ID: 20382516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental and economic benefits of electric, hybrid and conventional vehicle treatment: A case study of Lithuania.
    Petrauskienė K; Tverskytė R; Dvarionienė J
    Waste Manag; 2022 Mar; 140():55-62. PubMed ID: 35066452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resource conservation approached with an appropriate collection and upgrade-remanufacturing for used electronic products.
    Zlamparet GI; Tan Q; Stevels AB; Li J
    Waste Manag; 2018 Mar; 73():78-86. PubMed ID: 29254608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent decision making in disassembly process based on fuzzy reasoning petri nets.
    Gao M; Zhou M; Tang Y
    IEEE Trans Syst Man Cybern B Cybern; 2004 Oct; 34(5):2029-34. PubMed ID: 15503498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ease of disassembly of products to support circular economy strategies.
    Vanegas P; Peeters JR; Cattrysse D; Tecchio P; Ardente F; Mathieux F; Dewulf W; Duflou JR
    Resour Conserv Recycl; 2018 Aug; 135():323-334. PubMed ID: 30078953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remanufacturing end-of-life passenger car waste sheet steel into mesh sheet: A sustainability assessment.
    Abdullah ZT
    PLoS One; 2021; 16(10):e0258399. PubMed ID: 34644340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring the Resources and Environmental Impacts from the Precise Disassembly of E-Waste in China.
    Yu Z; Tian X; Gao Y; Yuan X; Xu Z; Zhang L
    Environ Sci Technol; 2023 Jun; 57(22):8256-8268. PubMed ID: 37212265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and solving the parallel mixed-flow remanufacturing disassembly line balancing problem for multi-variety products.
    Yu G; Zhang X; Meng W
    Sci Rep; 2022 Sep; 12(1):15383. PubMed ID: 36100695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.