BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33395572)

  • 1. Reconstructing seen image from brain activity by visually-guided cognitive representation and adversarial learning.
    Ren Z; Li J; Xue X; Li X; Yang F; Jiao Z; Gao X
    Neuroimage; 2021 Mar; 228():117602. PubMed ID: 33395572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Alignment-Auxiliary Generative Adversarial Network-Based Visual Stimuli Reconstruction via Multi-Subject fMRI.
    Huang S; Sun L; Yousefnezhad M; Wang M; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2715-2725. PubMed ID: 37279132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semantics-Guided Hierarchical Feature Encoding Generative Adversarial Network for Visual Image Reconstruction From Brain Activity.
    Meng L; Yang C
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1267-1283. PubMed ID: 38498745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception-to-Image: Reconstructing Natural Images from the Brain Activity of Visual Perception.
    Huang W; Yan H; Wang C; Li J; Zuo Z; Zhang J; Shen Z; Chen H
    Ann Biomed Eng; 2020 Sep; 48(9):2323-2332. PubMed ID: 32285343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BigGAN-based Bayesian Reconstruction of Natural Images from Human Brain Activity.
    Qiao K; Chen J; Wang L; Zhang C; Tong L; Yan B
    Neuroscience; 2020 Sep; 444():92-105. PubMed ID: 32736069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI Brain Decoding and Its Applications in Brain-Computer Interface: A Survey.
    Du B; Cheng X; Duan Y; Ning H
    Brain Sci; 2022 Feb; 12(2):. PubMed ID: 35203991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning brain representation using recurrent Wasserstein generative adversarial net.
    Qiang N; Dong Q; Liang H; Li J; Zhang S; Zhang C; Ge B; Sun Y; Gao J; Liu T; Yue H; Zhao S
    Comput Methods Programs Biomed; 2022 Aug; 223():106979. PubMed ID: 35792364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex.
    Han K; Wen H; Shi J; Lu KH; Zhang Y; Fu D; Liu Z
    Neuroimage; 2019 Sep; 198():125-136. PubMed ID: 31103784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative adversarial networks for reconstructing natural images from brain activity.
    Seeliger K; Güçlü U; Ambrogioni L; Güçlütürk Y; van Gerven MAJ
    Neuroimage; 2018 Nov; 181():775-785. PubMed ID: 30031932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional brain network identification and fMRI augmentation using a VAE-GAN framework.
    Qiang N; Gao J; Dong Q; Yue H; Liang H; Liu L; Yu J; Hu J; Zhang S; Ge B; Sun Y; Liu Z; Liu T; Li J; Song H; Zhao S
    Comput Biol Med; 2023 Oct; 165():107395. PubMed ID: 37669583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model.
    Ferrante M; Boccato T; Passamonti L; Toschi N
    J Neural Eng; 2024 Jun; 21(4):. PubMed ID: 38885689
    [No Abstract]   [Full Text] [Related]  

  • 13. Reconstructing faces from fMRI patterns using deep generative neural networks.
    VanRullen R; Reddy L
    Commun Biol; 2019; 2():193. PubMed ID: 31123717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing controllable faces from brain activity with hierarchical multiview representations.
    Ren Z; Li J; Xue X; Li X; Yang F; Jiao Z; Gao X
    Neural Netw; 2023 Sep; 166():487-500. PubMed ID: 37574622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing Perceived Images From Human Brain Activities With Bayesian Deep Multiview Learning.
    Du C; Du C; Huang L; He H
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2310-2323. PubMed ID: 30561354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperrealistic neural decoding for reconstructing faces from fMRI activations via the GAN latent space.
    Dado T; Güçlütürk Y; Ambrogioni L; Ras G; Bosch S; van Gerven M; Güçlü U
    Sci Rep; 2022 Jan; 12(1):141. PubMed ID: 34997012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing rapid natural vision with fMRI-conditional video generative adversarial network.
    Wang C; Yan H; Huang W; Li J; Wang Y; Fan YS; Sheng W; Liu T; Li R; Chen H
    Cereb Cortex; 2022 Oct; 32(20):4502-4511. PubMed ID: 35078227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing feedback representations in the ventral visual pathway with a generative adversarial autoencoder.
    Al-Tahan H; Mohsenzadeh Y
    PLoS Comput Biol; 2021 Mar; 17(3):e1008775. PubMed ID: 33760819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Natural Image Reconstruction from Human Brain Activity Based on Conditional Progressively Growing Generative Adversarial Networks.
    Huang W; Yan H; Wang C; Yang X; Li J; Zuo Z; Zhang J; Chen H
    Neurosci Bull; 2021 Mar; 37(3):369-379. PubMed ID: 33222145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.