These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Exoskeleton-Assisted Anthropomorphic Movement Training (EAMT) for Poststroke Upper Limb Rehabilitation: A Pilot Randomized Controlled Trial. Chen ZJ; He C; Guo F; Xiong CH; Huang XL Arch Phys Med Rehabil; 2021 Nov; 102(11):2074-2082. PubMed ID: 34174225 [TBL] [Abstract][Full Text] [Related]
3. Preliminary Assessment of a Postural Synergy-Based Exoskeleton for Post-Stroke Upper Limb Rehabilitation. He C; Xiong CH; Chen ZJ; Fan W; Huang XL; Fu C IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1795-1805. PubMed ID: 34428146 [TBL] [Abstract][Full Text] [Related]
4. Action observation treatment-based exoskeleton (AOT-EXO) for upper extremity after stroke: study protocol for a randomized controlled trial. Chen Z; Xia N; He C; Gu M; Xu J; Han X; Huang X Trials; 2021 Mar; 22(1):222. PubMed ID: 33743788 [TBL] [Abstract][Full Text] [Related]
5. Distal versus proximal - an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. Qian Q; Nam C; Guo Z; Huang Y; Hu X; Ng SC; Zheng Y; Poon W J Neuroeng Rehabil; 2019 Jun; 16(1):64. PubMed ID: 31159822 [TBL] [Abstract][Full Text] [Related]
6. Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors. Shi XQ; Heung HL; Tang ZQ; Li Z; Tong KY J Stroke Cerebrovasc Dis; 2021 Jul; 30(7):105812. PubMed ID: 33895427 [TBL] [Abstract][Full Text] [Related]
7. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response. Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293 [TBL] [Abstract][Full Text] [Related]
9. How Do Fugl-Meyer Arm Motor Scores Relate to Dexterity According to the Action Research Arm Test at 6 Months Poststroke? Hoonhorst MH; Nijland RH; van den Berg JS; Emmelot CH; Kollen BJ; Kwakkel G Arch Phys Med Rehabil; 2015 Oct; 96(10):1845-9. PubMed ID: 26143054 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke. Rabadi MH; Rabadi FM Arch Phys Med Rehabil; 2006 Jul; 87(7):962-6. PubMed ID: 16813784 [TBL] [Abstract][Full Text] [Related]
12. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study. Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952 [TBL] [Abstract][Full Text] [Related]
13. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training. Curado MR; Cossio EG; Broetz D; Agostini M; Cho W; Brasil FL; Yilmaz O; Liberati G; Lepski G; Birbaumer N; Ramos-Murguialday A PLoS One; 2015; 10(10):e0140161. PubMed ID: 26495971 [TBL] [Abstract][Full Text] [Related]
14. Dissociating motor learning from recovery in exoskeleton training post-stroke. Schweighofer N; Wang C; Mottet D; Laffont I; Bakhti K; Reinkensmeyer DJ; Rémy-Néris O J Neuroeng Rehabil; 2018 Oct; 15(1):89. PubMed ID: 30290806 [TBL] [Abstract][Full Text] [Related]
15. Early post-stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: equally efficient in older patients. Gueye T; Dedkova M; Rogalewicz V; Grunerova-Lippertova M; Angerova Y Neurol Neurochir Pol; 2021; 55(1):91-96. PubMed ID: 33314016 [TBL] [Abstract][Full Text] [Related]
16. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Ang KK; Chua KS; Phua KS; Wang C; Chin ZY; Kuah CW; Low W; Guan C Clin EEG Neurosci; 2015 Oct; 46(4):310-20. PubMed ID: 24756025 [TBL] [Abstract][Full Text] [Related]
17. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
18. Brain-Computer Interface Coupled to a Robotic Hand Orthosis for Stroke Patients' Neurorehabilitation: A Crossover Feasibility Study. Cantillo-Negrete J; Carino-Escobar RI; Carrillo-Mora P; Rodriguez-Barragan MA; Hernandez-Arenas C; Quinzaños-Fresnedo J; Hernandez-Sanchez IR; Galicia-Alvarado MA; Miguel-Puga A; Arias-Carrion O Front Hum Neurosci; 2021; 15():656975. PubMed ID: 34163342 [TBL] [Abstract][Full Text] [Related]
19. Impact of initial flexor synergy pattern scores on improving upper extremity function in stroke patients treated with adjunct robotic rehabilitation: A randomized clinical trial. Takebayashi T; Takahashi K; Domen K; Hachisuka K Top Stroke Rehabil; 2020 Oct; 27(7):516-524. PubMed ID: 32151236 [No Abstract] [Full Text] [Related]
20. Absence of Motor-Evoked Potentials Does Not Predict Poor Recovery in Patients With Severe-Moderate Stroke: An Exploratory Analysis. Powell ES; Westgate PM; Goldstein LB; Sawaki L Arch Rehabil Res Clin Transl; 2019 Dec; 1(3-4):100023. PubMed ID: 33543054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]