These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33395991)

  • 21. Impact of initial flexor synergy pattern scores on improving upper extremity function in stroke patients treated with adjunct robotic rehabilitation: A randomized clinical trial.
    Takebayashi T; Takahashi K; Domen K; Hachisuka K
    Top Stroke Rehabil; 2020 Oct; 27(7):516-524. PubMed ID: 32151236
    [No Abstract]   [Full Text] [Related]  

  • 22. Absence of Motor-Evoked Potentials Does Not Predict Poor Recovery in Patients With Severe-Moderate Stroke: An Exploratory Analysis.
    Powell ES; Westgate PM; Goldstein LB; Sawaki L
    Arch Rehabil Res Clin Transl; 2019 Dec; 1(3-4):100023. PubMed ID: 33543054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time course of the upper limb motor recovery in subacute stroke patients undergoing conventional or robotic rehabilitation. A preliminary report.
    Germanotta M; Cruciani A; Galli C; Cattaneo D; Spedicato A; Aprile I
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):201-208. Technology in Medicine. PubMed ID: 33386050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictive factors of upper limb motor recovery for stroke survivors admitted to a rehabilitation program.
    Wu J; Zhang J; Bai Z; Chen S; Cai S
    Eur J Phys Rehabil Med; 2020 Dec; 56(6):706-712. PubMed ID: 32667149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. End-point kinematics using virtual reality explaining upper limb impairment and activity capacity in stroke.
    Hussain N; Sunnerhagen KS; Alt Murphy M
    J Neuroeng Rehabil; 2019 Jul; 16(1):82. PubMed ID: 31262320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exoskeleton for post-stroke recovery of ambulation (ExStRA): study protocol for a mixed-methods study investigating the efficacy and acceptance of an exoskeleton-based physical therapy program during stroke inpatient rehabilitation.
    Louie DR; Mortenson WB; Durocher M; Teasell R; Yao J; Eng JJ
    BMC Neurol; 2020 Jan; 20(1):35. PubMed ID: 31992219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical validation of kinematic assessments of post-stroke upper limb movements with a multi-joint arm exoskeleton.
    Grimm F; Kraugmann J; Naros G; Gharabaghi A
    J Neuroeng Rehabil; 2021 Jun; 18(1):92. PubMed ID: 34078400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial.
    Frolov AA; Mokienko O; Lyukmanov R; Biryukova E; Kotov S; Turbina L; Nadareyshvily G; Bushkova Y
    Front Neurosci; 2017; 11():400. PubMed ID: 28775677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain-Computer Interface-Based Soft Robotic Glove Rehabilitation for Stroke.
    Cheng N; Phua KS; Lai HS; Tam PK; Tang KY; Cheng KK; Yeow RC; Ang KK; Guan C; Lim JH
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3339-3351. PubMed ID: 32248089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions.
    Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL
    J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ipsilesional Mu Rhythm Desynchronization and Changes in Motor Behavior Following Post Stroke BCI Intervention for Motor Rehabilitation.
    Remsik AB; Williams L; Gjini K; Dodd K; Thoma J; Jacobson T; Walczak M; McMillan M; Rajan S; Young BM; Nigogosyan Z; Advani H; Mohanty R; Tellapragada N; Allen J; Mazrooyisebdani M; Walton LM; van Kan PLE; Kang TJ; Sattin JA; Nair VA; Edwards DF; Williams JC; Prabhakaran V
    Front Neurosci; 2019; 13():53. PubMed ID: 30899211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contralesional Brain-Computer Interface Control of a Powered Exoskeleton for Motor Recovery in Chronic Stroke Survivors.
    Bundy DT; Souders L; Baranyai K; Leonard L; Schalk G; Coker R; Moran DW; Huskey T; Leuthardt EC
    Stroke; 2017 Jul; 48(7):1908-1915. PubMed ID: 28550098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors.
    Bhagat NA; Venkatakrishnan A; Abibullaev B; Artz EJ; Yozbatiran N; Blank AA; French J; Karmonik C; Grossman RG; O'Malley MK; Francisco GE; Contreras-Vidal JL
    Front Neurosci; 2016; 10():122. PubMed ID: 27065787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System.
    Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J
    Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can robot-based measurements improve prediction of motor performance after robot-assisted upper-limb rehabilitation in patients with moderate-to-severe sub-acute stroke?
    Duret C; Pila O; Grosmaire AG; Koeppel T
    Restor Neurol Neurosci; 2019; 37(2):119-129. PubMed ID: 30909254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The responsiveness and correlation between Fugl-Meyer Assessment, Motor Status Scale, and the Action Research Arm Test in chronic stroke with upper-extremity rehabilitation robotic training.
    Wei XJ; Tong KY; Hu XL
    Int J Rehabil Res; 2011 Dec; 34(4):349-56. PubMed ID: 22044987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Fugl-Meyer assessment of the upper extremity: reliability, responsiveness and validity of the Danish version.
    Lundquist CB; Maribo T
    Disabil Rehabil; 2017 May; 39(9):934-939. PubMed ID: 27062881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting.
    Sivan M; Gallagher J; Makower S; Keeling D; Bhakta B; O'Connor RJ; Levesley M
    J Neuroeng Rehabil; 2014 Dec; 11():163. PubMed ID: 25495889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaching exercise for chronic paretic upper extremity after stroke using a novel rehabilitation robot with arm-weight support and concomitant electrical stimulation and vibration: before-and-after feasibility trial.
    Amano Y; Noma T; Etoh S; Miyata R; Kawamura K; Shimodozono M
    Biomed Eng Online; 2020 May; 19(1):28. PubMed ID: 32375788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.