BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33396009)

  • 41. The acute toxicity of bisphenol A and lignin-derived bisphenol in algae, daphnids, and Japanese medaka.
    Li D; Bi R; Chen H; Mu L; Zhang L; Chen Q; Xie H; Luo Y; Xie L
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23872-23879. PubMed ID: 28871522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils.
    Li Y; Dong F; Liu X; Xu J; Han Y; Zheng Y
    Chemosphere; 2015 Mar; 122():145-153. PubMed ID: 25475972
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toxicity identification evaluation of anaerobically treated swine slurry: a comparison between Daphnia magna and Raphanus sativus.
    Villamar CA; Silva J; Bay-Schmith E; Vidal G
    J Environ Sci Health B; 2014; 49(11):880-8. PubMed ID: 25190563
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acute and chronic response of Daphnia magna exposed to TiO2 nanoparticles in agitation system.
    Kim KT; Klaine SJ; Kim SD
    Bull Environ Contam Toxicol; 2014 Oct; 93(4):456-60. PubMed ID: 24845425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acute and chronic toxicity of benzotriazoles to aquatic organisms.
    Seeland A; Oetken M; Kiss A; Fries E; Oehlmann J
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1781-90. PubMed ID: 22203403
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin.
    Rico A; Zhao W; Gillissen F; Lürling M; Van den Brink PJ
    Ecotoxicol Environ Saf; 2018 Feb; 148():228-236. PubMed ID: 29055776
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toxicity evaluation of 4,4'-di-CDPS and 4,4'-di-CDE on green algae Scenedesmus obliquus: growth inhibition, change in pigment content, and oxidative stress.
    Fang B; Shi J; Qin L; Feng M; Cheng D; Wang T; Zhang X
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15630-15640. PubMed ID: 29574639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acute and chronic aquatic toxicity of ammonium perfluorooctanoate (APFO) to freshwater organisms.
    Colombo I; de Wolf W; Thompson RS; Farrar DG; Hoke RA; L'Haridon J
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):749-56. PubMed ID: 18538392
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ecotoxicity of artificial sweeteners and stevioside.
    Stolte S; Steudte S; Schebb NH; Willenberg I; Stepnowski P
    Environ Int; 2013 Oct; 60():123-7. PubMed ID: 24036324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells.
    Zhou Z; Wang Z; Zhou Y; Pang S; Wang D; Xu H; Liu Z; Padture NP; Cui G
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9705-9. PubMed ID: 26118666
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae.
    Gu S; Zheng H; Xu Q; Sun C; Shi M; Wang Z; Li F
    Aquat Toxicol; 2017 Oct; 191():122-130. PubMed ID: 28822891
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benefits of the Hydrophobic Surface for CH
    Li Y; Xu Z; Zhao S; Song D; Qiao B; Zhu Y; Meng J
    Molecules; 2019 May; 24(10):. PubMed ID: 31137910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lead-rivet strategy of growing perovskite nanocrystals for excellent toxicity inhibition and spinning application.
    Wang H; Zhu S; Sheng J; Gao F; Yang L; Hu X; Fernández-Martínez F; Lin L; You C; Xing D
    J Hazard Mater; 2024 Aug; 475():134796. PubMed ID: 38870851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uptake and toxicity of methylmethacrylate-based nanoplastic particles in aquatic organisms.
    Booth AM; Hansen BH; Frenzel M; Johnsen H; Altin D
    Environ Toxicol Chem; 2016 Jul; 35(7):1641-9. PubMed ID: 26011080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS.
    Georgantzopoulou A; Balachandran YL; Rosenkranz P; Dusinska M; Lankoff A; Wojewodzka M; Kruszewski M; Guignard C; Audinot JN; Girija S; Hoffmann L; Gutleb AC
    Nanotoxicology; 2013 Nov; 7(7):1168-78. PubMed ID: 22834480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.
    Oropesa AL; Floro AM; Palma P
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16605-16616. PubMed ID: 28474259
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus.
    Wei C; Zhang Y; Guo J; Han B; Yang X; Yuan J
    J Environ Sci (China); 2010; 22(1):155-60. PubMed ID: 20397400
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions.
    Grzesiuk M; Spijkerman E; Lachmann SC; Wacker A
    Ecotoxicol Environ Saf; 2018 Jul; 156():271-278. PubMed ID: 29554612
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana.
    Fisher D; Yonkos L; Ziegler G; Friedel E; Burton D
    Water Res; 2014 May; 55():233-44. PubMed ID: 24607524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna.
    Zhao CM; Wang WX
    Environ Toxicol Chem; 2011 Apr; 30(4):885-92. PubMed ID: 21191880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.