BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33396046)

  • 1. How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum.
    Ma J; Zhou B; Chen F; Pan K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111715. PubMed ID: 33396046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nitrogen and phosphorus availability on cadmium tolerance in the marine diatom Phaeodactylum tricornutum.
    Ma J; Chen F; Zhou B; Zhang Z; Pan K
    Sci Total Environ; 2022 Sep; 838(Pt 4):156615. PubMed ID: 35691352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of silicon in combating cadmium challenge in the Marine diatom Phaeodactylum tricornutum.
    Ma J; Zhou B; Tan Q; Zhang L; Pan K
    J Hazard Mater; 2020 May; 389():121903. PubMed ID: 31879097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of metal combinations on the production of phytochelatins and glutathione by the marine diatom Phaeodactylum tricornutum.
    Kawakami SK; Gledhill M; Achterberg EP
    Biometals; 2006 Feb; 19(1):51-60. PubMed ID: 16502331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cadmium- and lead-phytochelatin complexes formed in a marine microalga in response to metal exposure.
    Scarano G; Morelli E
    Biometals; 2002 Jun; 15(2):145-51. PubMed ID: 12046922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative in depth RNA sequencing of P. tricornutum's morphotypes reveals specific features of the oval morphotype.
    Ovide C; Kiefer-Meyer MC; Bérard C; Vergne N; Lecroq T; Plasson C; Burel C; Bernard S; Driouich A; Lerouge P; Tournier I; Dauchel H; Bardor M
    Sci Rep; 2018 Sep; 8(1):14340. PubMed ID: 30254372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum.
    Morelli E; Scarano G
    Mar Environ Res; 2001 Oct; 52(4):383-95. PubMed ID: 11695656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying the alleviated cadmium toxicity in marine diatoms adapted to ocean acidification.
    Zhang Z; Ma J; Chen F; Chen Y; Pan K; Liu H
    J Hazard Mater; 2024 Feb; 463():132804. PubMed ID: 37890381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: exposure to cadmium.
    Wang MJ; Wang WX
    Aquat Toxicol; 2011 Jan; 101(2):377-86. PubMed ID: 21216348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent sensitivity of a marine diatom to cadmium stress explained by subcelluar distribution and thiol synthesis.
    Wang MJ; Wang WX
    Environ Sci Technol; 2008 Nov; 42(22):8603-8. PubMed ID: 19068855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Relationship between Cadmium Uptake and the Kinetics of Phytochelatin Induction by Cadmium in a Marine Diatom.
    Wu Y; Guo Z; Zhang W; Tan Q; Zhang L; Ge X; Chen M
    Sci Rep; 2016 Oct; 6():35935. PubMed ID: 27779209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochelatins in the diatom Phaeodactylum tricornutum Bohlin: an evaluation of their use as biomarkers of metal exposure in marine waters.
    Morelli E; Fantozzi L
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):236-41. PubMed ID: 18575794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon limitation reduced the adsorption of cadmium in marine diatoms.
    Ma J; Zhou B; Duan D; Wei Y; Pan K
    Aquat Toxicol; 2018 Sep; 202():136-144. PubMed ID: 30031253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of CO
    Dong F; Zhu X; Qian W; Wang P; Wang J
    Mar Pollut Bull; 2020 Jan; 150():110594. PubMed ID: 31727316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide profiling of responses to cadmium in the diatom Phaeodactylum tricornutum.
    Brembu T; Jørstad M; Winge P; Valle KC; Bones AM
    Environ Sci Technol; 2011 Sep; 45(18):7640-7. PubMed ID: 21812388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium.
    Smith CL; Steele JE; Stauber JL; Jolley DF
    Aquat Toxicol; 2014 Nov; 156():211-20. PubMed ID: 25261820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure.
    Wang MJ; Wang WX
    Aquat Toxicol; 2011 Jan; 101(2):387-95. PubMed ID: 21216349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum.
    De Martino A; Bartual A; Willis A; Meichenin A; Villazán B; Maheswari U; Bowler C
    Protist; 2011 Jul; 162(3):462-81. PubMed ID: 21600845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms underlying silicon-dependent metal tolerance in the marine diatom Phaeodactylum tricornutum.
    Zhou B; Ma J; Chen F; Zou Y; Wei Y; Zhong H; Pan K
    Environ Pollut; 2020 Jul; 262():114331. PubMed ID: 32443203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response and detoxification strategies of three freshwater phytoplankton species, Aphanizomenon flos-aquae, Pediastrum simplex, and Synedra acus, to cadmium.
    Ran X; Yue H; Fu X; Kang Y; Xu S; Yang Y; Xu J; Shi J; Wu Z
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19596-606. PubMed ID: 26272291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.