BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 33396287)

  • 1. Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain.
    Vandekerckhove B; Missinne J; Vonck K; Bauwens P; Verplancke R; Boon P; Raedt R; Vanfleteren J
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic intervention of seizures improves spatial memory in a mouse model of chronic temporal lobe epilepsy.
    Kim HK; Gschwind T; Nguyen TM; Bui AD; Felong S; Ampig K; Suh D; Ciernia AV; Wood MA; Soltesz I
    Epilepsia; 2020 Mar; 61(3):561-571. PubMed ID: 32072628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetics for controlling seizure circuits for translational approaches.
    Ledri M; Andersson M; Wickham J; Kokaia M
    Neurobiol Dis; 2023 Aug; 184():106234. PubMed ID: 37479090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber-based optrode with microstructured fiber tips for controlled light delivery in optogenetics.
    Petrovic J; Lange F; Hohlfeld D
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37080213
    [No Abstract]   [Full Text] [Related]  

  • 5. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A silk-based self-adaptive flexible opto-electro neural probe.
    Zhou Y; Gu C; Liang J; Zhang B; Yang H; Zhou Z; Li M; Sun L; Tao TH; Wei X
    Microsyst Nanoeng; 2022; 8():118. PubMed ID: 36389054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closed-loop optogenetic control of the dynamics of neural activity in non-human primates.
    Zaaimi B; Turnbull M; Hazra A; Wang Y; Gandara C; McLeod F; McDermott EE; Escobedo-Cousin E; Idil AS; Bailey RG; Tardio S; Patel A; Ponon N; Gausden J; Walsh D; Hutchings F; Kaiser M; Cunningham MO; Clowry GJ; LeBeau FEN; Constandinou TG; Baker SN; Donaldson N; Degenaar P; O'Neill A; Trevelyan AJ; Jackson A
    Nat Biomed Eng; 2023 Apr; 7(4):559-575. PubMed ID: 36266536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of An Implantable Optrode for Optogenetic Stimulation].
    Yue S; Yuan M; Zhang Y; Wang X; Wang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):337-42. PubMed ID: 29708670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 10. A Closed-Loop Optogenetic Platform.
    Firfilionis D; Hutchings F; Tamadoni R; Walsh D; Turnbull M; Escobedo-Cousin E; Bailey RG; Gausden J; Patel A; Haci D; Liu Y; LeBeau FEN; Trevelyan A; Constandinou TG; O'Neill A; Kaiser M; Degenaar P; Jackson A
    Front Neurosci; 2021; 15():718311. PubMed ID: 34566564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI compatible optrodes for simultaneous LFP and optogenetic fMRI investigation of seizure-like afterdischarges.
    Duffy BA; Choy M; Chuapoco MR; Madsen M; Lee JH
    Neuroimage; 2015 Dec; 123():173-84. PubMed ID: 26208873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optrode Array for Simultaneous Optogenetic Modulation and Electrical Neural Recording.
    Lee Y; Ryu D; Jeon S; Lee Y; Cho YK; Ji CH; Kim YK; Jun SB
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36121270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A drivable optrode for use in chronic electrophysiology and optogenetic experiments.
    Stocke SK; Samuelsen CL
    J Neurosci Methods; 2021 Jan; 348():108979. PubMed ID: 33096153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic approaches to treat epilepsy.
    Wykes RC; Kullmann DM; Pavlov I; Magloire V
    J Neurosci Methods; 2016 Feb; 260():215-20. PubMed ID: 26072246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and modification of implantable optrode arrays for
    Wang L; Huang K; Zhong C; Wang L; Lu Y
    Biophys Rep; 2018; 4(2):82-93. PubMed ID: 29756008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dense Packed Drivable Optrode Array for Precise Optical Stimulation and Neural Recording in Multiple-Brain Regions.
    Wang L; Ge C; Wang F; Guo Z; Hong W; Jiang C; Ji B; Wang M; Li C; Sun B; Liu J
    ACS Sens; 2021 Nov; 6(11):4126-4135. PubMed ID: 34779610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models.
    Boyle PM; Murphy MJ; Karathanos TV; Zahid S; Blake RC; Trayanova NA
    J Physiol; 2018 Jan; 596(2):181-196. PubMed ID: 29193078
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.