BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 33396287)

  • 21. Implantable Optrode Array for Optogenetic Modulation and Electrical Neural Recording.
    Jeon S; Lee Y; Ryu D; Cho YK; Lee Y; Jun SB; Ji CH
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34205473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Medial septal GABAergic neurons reduce seizure duration upon optogenetic closed-loop stimulation.
    Hristova K; Martinez-Gonzalez C; Watson TC; Codadu NK; Hashemi K; Kind PC; Nolan MF; Gonzalez-Sulser A
    Brain; 2021 Jun; 144(5):1576-1589. PubMed ID: 33769452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NeuralTree: A 256-Channel 0.227-μJ/Class Versatile Neural Activity Classification and Closed-Loop Neuromodulation SoC.
    Shin U; Ding C; Zhu B; Vyza Y; Trouillet A; Revol ECM; Lacour SP; Shoaran M
    IEEE J Solid-State Circuits; 2022; 57(11):3243-3257. PubMed ID: 36744006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optogenetic cell control in experimental models of neurological disorders.
    Tønnesen J
    Behav Brain Res; 2013 Oct; 255():35-43. PubMed ID: 23871610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. State-space optimal feedback control of optogenetically driven neural activity.
    Bolus MF; Willats AA; Rozell CJ; Stanley GB
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32932241
    [No Abstract]   [Full Text] [Related]  

  • 27. Excitation, but not inhibition, of the fastigial nucleus provides powerful control over temporal lobe seizures.
    Streng ML; Krook-Magnuson E
    J Physiol; 2020 Jan; 598(1):171-187. PubMed ID: 31682010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Neural Engine: A Reprogrammable Low Power Platform for Closed-Loop Optogenetics.
    Luo J; Firflionis D; Turnbull M; Xu W; Walsh D; Escobedo-Cousin E; Soltan A; Ramezani R; Liu Y; Bailey R; ONeill A; Idil AS; Donaldson N; Constandinou T; Jackson A; Degenaar P
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3004-3015. PubMed ID: 32091984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seeding neural progenitor cells on silicon-based neural probes.
    Azemi E; Gobbel GT; Cui XT
    J Neurosurg; 2010 Sep; 113(3):673-81. PubMed ID: 20151783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seizing Control: From Current Treatments to Optogenetic Interventions in Epilepsy.
    Bui AD; Alexander A; Soltesz I
    Neuroscientist; 2017 Feb; 23(1):68-81. PubMed ID: 26700888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epilepsy and optogenetics: can seizures be controlled by light?
    Tønnesen J; Kokaia M
    Clin Sci (Lond); 2017 Jul; 131(14):1605-1616. PubMed ID: 28667062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Landscape and future directions of machine learning applications in closed-loop brain stimulation.
    Chandrabhatla AS; Pomeraniec IJ; Horgan TM; Wat EK; Ksendzovsky A
    NPJ Digit Med; 2023 Apr; 6(1):79. PubMed ID: 37106034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophysiology-Based Closed Loop Optogenetic Brain Stimulation Devices: Recent Developments and Future Prospects.
    Kumari LS; Kouzani AZ
    IEEE Rev Biomed Eng; 2023; 16():91-108. PubMed ID: 34995192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of the Stimulation Capabilities of a High-Resolution Neurorecording Probe for the Application of Closed-Loop Deep Brain Stimulation.
    Tarnaud T; Tanghe E; Haesler S; Lopez CM; Martens L; Joseph W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2166-2169. PubMed ID: 30440833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes.
    Liu X; Lu Y; Iseri E; Shi Y; Kuzum D
    Front Neurosci; 2018; 12():132. PubMed ID: 29559885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards circuit optogenetics.
    Chen IW; Papagiakoumou E; Emiliani V
    Curr Opin Neurobiol; 2018 Jun; 50():179-189. PubMed ID: 29635216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation.
    Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits.
    Altahini S; Arnoux I; Stroh A
    Biol Chem; 2024 Jan; 405(1):43-54. PubMed ID: 37650383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.