BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33396340)

  • 1. Effects of Saturation Levels on the Ultrasonic Pulse Velocities and Mechanical Properties of Concrete.
    Candelaria MDE; Kee SH; Yee JJ; Lee JW
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Static and Dynamic Residual Mechanical Properties of Heat-Damaged Concrete for Nuclear Reactor Auxiliary Buildings in Korea Using Elastic Wave Velocity Measurements.
    Kee SH; Kang JW; Choi BJ; Kwon J; Candelaria MD
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods.
    Candelaria MDE; Kee SH; Lee KS
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Static Modulus and Compressive Strength of Concrete from Dynamic Modulus Associated with Wave Velocity and Resonance Frequency Using Machine Learning Techniques.
    Park JY; Sim SH; Yoon YG; Oh TK
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32605042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Humidity on the Elastic Modulus and Axis Compressive Strength of Concrete in a Water Environment.
    Zhang G; Li C; Wei H; Wang M; Yang Z; Gu Y
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concrete Compressive Strength by Means of Ultrasonic Pulse Velocity and Moduli of Elasticity.
    Bolborea B; Baera C; Dan S; Gruin A; Burduhos-Nergis DD; Vasile V
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Moisture Condition of Structural Lightweight Concretes on Specified Values of Static and Dynamic Modulus of Elasticity.
    DomagaƂa L; Sieja K
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation Analysis of Ultrasonic Pulse Velocity and Mechanical Properties of Normal Aggregate and Lightweight Aggregate Concretes in 30-60 MPa Range.
    Kim W; Jeong K; Choi H; Lee T
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Heat-Induced Damage in Concrete Using Machine Learning of Ultrasonic Pulse Waves.
    Candelaria MDE; Chua NMM; Kee SH
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual Compressive Strength Prediction Model for Concrete Subject to High Temperatures Using Ultrasonic Pulse Velocity.
    Kim W; Choi H; Lee T
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Analysis of Static and Dynamic Mechanical Behavior for Dry and Saturated Cement Mortar.
    Mustafa A; Mahmoud MA; Abdulraheem A; Furquan SA; Al-Nakhli A; BaTaweel M
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Study of Thermally Damaged Concrete under a Hygrothermal Environment by Using a Combined Infrared Thermal Imaging and Ultrasonic Pulse Velocity Method.
    Wang Y; Cui J; Deng J; Zhou H
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.
    Yoon H; Kim YJ; Kim HS; Kang JW; Koh HM
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.
    Trtnik G; Kavcic F; Turk G
    Ultrasonics; 2009 Jan; 49(1):53-60. PubMed ID: 18589471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating Ultrasonic Pulse Velocity Method for Evaluating High-Temperature Properties of Non-Sintered Hwangto-Mixed Concrete as a Cement Replacement Material.
    Kim W; Choi H; Lee T
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterioration and Oxidation Characteristics of Black Shale under Immersion and Its Impact on the Strength of Concrete.
    Liao X; Zhang W; Chen J; Wang Q; Wu X; Ling S; Guo D
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32486460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Steel Plates on Estimation of the Compressive Strength of Concrete via Ultrasonic Testing.
    Rhim HC; Kim DY; Cho CS; Kim DH
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation on Early Strength Development of Concrete Mixed with Non-Sintered Hwangto Using Ultrasonic Pulse Velocity.
    Nam Y; Jeong K; Kim W; Choi H; Lee T
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Concrete Mix Proportion Based on Particle Packing Voidage and Test Research on Compressive Strength and Elastic Modulus of Concrete.
    Cheng YH; Zhu BL; Yang SH; Tong BQ
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Damage Detection of Asphalt Concrete Using Piezo-Ultrasonic Wave Technology.
    Pan WH; Sun XD; Wu LM; Yang KK; Tang N
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30709018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.