These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 33396386)
1. Impact Damage Detection in Patch-Repaired CFRP Laminates Using Nonlinear Lamb Waves. Yin Z; Li C; Tie Y; Duan Y Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396386 [TBL] [Abstract][Full Text] [Related]
2. Optimization of Nonlinear Lamb Wave Detection System Parameters in CFRP Laminates. Yin Z; Tie Y; Duan Y; Li C Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207800 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear Lamb waves for fatigue damage identification in FRP-reinforced steel plates. Wang Y; Guan R; Lu Y Ultrasonics; 2017 Sep; 80():87-95. PubMed ID: 28511082 [TBL] [Abstract][Full Text] [Related]
4. Experimental and numerical investigations on the impact behaviour of pristine and patch-repaired composite laminates. Liu H; Brooks RA; Hall ZEC; Liu J; Crocker JWM; Joesbury AM; Harper LT; Blackman BRK; Kinloch AJ; Dear JP Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2232):20210340. PubMed ID: 35909361 [TBL] [Abstract][Full Text] [Related]
5. A hybrid method based upon nonlinear Lamb wave response for locating a delamination in composite laminates. Yelve NP; Mitra M; Mujumdar PM; Ramadas C Ultrasonics; 2016 Aug; 70():12-7. PubMed ID: 27115575 [TBL] [Abstract][Full Text] [Related]
6. Digital Image Correlation and Ultrasonic Lamb Waves for the Detection and Prediction of Crack-Type Damage in Fiber-Reinforced Polymer Composite Laminates. Jasiūnienė E; Vaitkūnas T; Šeštokė J; Griškevičius P Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065297 [TBL] [Abstract][Full Text] [Related]
7. Experimental and Numerical Investigation on the Influence Factors of Damage Interference of Patch-Repaired CFRP Laminates under Double Impacts. Sun Z; Li C; Tie Y Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987183 [TBL] [Abstract][Full Text] [Related]
8. The strength recovery effect of scarf bonding on the CFRP laminates with impact damage. Xiao X; Shanyong X; Bin F Heliyon; 2023 Aug; 9(8):e19143. PubMed ID: 37636436 [TBL] [Abstract][Full Text] [Related]
9. Research on Delamination Damage Quantification Detection of CFRP Bending Plate Based on Lamb Wave Mode Control. Yu Q; Zhou S; Cheng Y; Deng Y Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544053 [TBL] [Abstract][Full Text] [Related]
10. Impact Damage Detection Using Chirp Ultrasonic Guided Waves for Development of Health Monitoring System for CFRP Mobility Structures. Tan L; Saito O; Yu F; Okabe Y; Kondoh T; Tezuka S; Chiba A Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161538 [TBL] [Abstract][Full Text] [Related]
11. Research on Low-Velocity Impact Response of Novel Short-Fiber-Reinforced Composite Laminates. Huang Y; EShun FT; Hu J; Zhang X; Zhao J; Zhang S; Qian R; Chen Z; Chen D Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850124 [TBL] [Abstract][Full Text] [Related]
12. Study on High-Velocity Impact Perforation Performance of CFRP Laminates for Rail Vehicles: Experiment and Simulation. Chen X; Peng Y; Wang K; Wang X; Liu Z; Huang Z; Zhang H Biomimetics (Basel); 2023 Nov; 8(8):. PubMed ID: 38132507 [TBL] [Abstract][Full Text] [Related]
13. Experimental and Numerical Study of Low-Velocity Impact and Tensile after Impact for CFRP Laminates Single-Lap Joints Adhesively Bonded Structure. Hu C; Huang G; Li C Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33669959 [TBL] [Abstract][Full Text] [Related]
14. Imaging of sub-surface defect in CFRP laminate using A Rabbi MS; Teramoto K; Ishibashi H; Roshid MM Ultrasonics; 2023 Jan; 127():106849. PubMed ID: 36137467 [TBL] [Abstract][Full Text] [Related]
15. Local Wavenumber Method for Delamination Characterization in Composites With Sparse Representation of Lamb Waves. Gao F; Hua J; Wang L; Zeng L; Lin J IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1305-1313. PubMed ID: 32903178 [TBL] [Abstract][Full Text] [Related]
16. Ultrasonic imaging of delamination in thick CFRP laminates using an energy-compensation reverse time migration method. Yang H; Yang Z; Lu S; Shan Y; Ma J; Yang L; Wu Z Ultrasonics; 2024 Mar; 138():107253. PubMed ID: 38309036 [TBL] [Abstract][Full Text] [Related]
17. Relationship Between Matrix Cracking and Delamination in CFRP Cross-Ply Laminates Subjected to Low Velocity Impact. Tan R; Xu J; Sun W; Liu Z; Guan Z; Guo X Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31810160 [TBL] [Abstract][Full Text] [Related]
18. Ultrasonic-Vibration-Assisted Waterjet Drilling of [0/45/-45/90] Liao Y; Liu X; Zhao C; Wang B; Zheng L; Hao X; Yao L; Wang D Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138378 [TBL] [Abstract][Full Text] [Related]
19. Finite Element Analysis of the Effect for Different Thicknesses and Stitching Densities under the Low-Velocity Impact of Stitched Composite Laminates. Liu B; Lai J; Liu H; Huang Z; Liu T; Xia Y; Zhang W Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139879 [TBL] [Abstract][Full Text] [Related]
20. Finite Element Analysis of Lightning Damage Factors Based on Carbon Fiber Reinforced Polymer. Zhu Y; Ming Y; Wang B; Duan Y; Xiao H; Zhang C; Sun J; Tian X Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]