These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33396405)
21. Biochemical analysis of three red grapevine varieties during three phenological periods grown under Mediterranean climate conditions. Monteiro A; Pereira S; Bernardo S; Gómez-Cadenas A; Moutinho-Pereira J; Dinis LT Plant Biol (Stuttg); 2024 Aug; 26(5):855-867. PubMed ID: 38886872 [TBL] [Abstract][Full Text] [Related]
22. Effect of climate change on infection of grapevine by downy and powdery mildew under controlled environment. Pugliese M; Gullino ML; Garibaldi A Commun Agric Appl Biol Sci; 2011; 76(4):579-82. PubMed ID: 22702176 [TBL] [Abstract][Full Text] [Related]
23. The impact of grapevine red blotch disease on Vitis vinifera L. Chardonnay grape and wine composition and sensory attributes over three seasons. Cauduro Girardello R; Rich V; Smith RJ; Brenneman C; Heymann H; Oberholster A J Sci Food Agric; 2020 Mar; 100(4):1436-1447. PubMed ID: 31742703 [TBL] [Abstract][Full Text] [Related]
24. Assessing Impacts of Climate Change on Phenology and Quality Traits of Biasi R; Brunori E; Ferrara C; Salvati L Plants (Basel); 2019 May; 8(5):. PubMed ID: 31075953 [TBL] [Abstract][Full Text] [Related]
25. Flavor of cold-hardy grapes: impact of berry maturity and environmental conditions. Pedneault K; Dorais M; Angers P J Agric Food Chem; 2013 Nov; 61(44):10418-38. PubMed ID: 24151907 [TBL] [Abstract][Full Text] [Related]
26. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar. Alabi OJ; Casassa LF; Gutha LR; Larsen RC; Henick-Kling T; Harbertson JF; Naidu RA PLoS One; 2016; 11(2):e0149666. PubMed ID: 26919614 [TBL] [Abstract][Full Text] [Related]
28. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. Movahed N; Pastore C; Cellini A; Allegro G; Valentini G; Zenoni S; Cavallini E; D'Incà E; Tornielli GB; Filippetti I J Plant Res; 2016 May; 129(3):513-26. PubMed ID: 26825649 [TBL] [Abstract][Full Text] [Related]
29. Grape yield and quality responses to simulated year 2100 expected climatic conditions under different soil textures. Leibar U; Pascual I; Morales F; Aizpurua A; Unamunzaga O J Sci Food Agric; 2017 Jun; 97(8):2633-2640. PubMed ID: 27748529 [TBL] [Abstract][Full Text] [Related]
30. Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. Houel C; Chatbanyong R; Doligez A; Rienth M; Foria S; Luchaire N; Roux C; Adivèze A; Lopez G; Farnos M; Pellegrino A; This P; Romieu C; Torregrosa L BMC Plant Biol; 2015 Aug; 15():205. PubMed ID: 26283631 [TBL] [Abstract][Full Text] [Related]
31. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario-A Review. Rienth M; Vigneron N; Darriet P; Sweetman C; Burbidge C; Bonghi C; Walker RP; Famiani F; Castellarin SD Front Plant Sci; 2021; 12():643258. PubMed ID: 33828576 [TBL] [Abstract][Full Text] [Related]
33. Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.). Sofo A; Nuzzo V; Tataranni G; Manfra M; De Nisco M; Scopa A J Plant Physiol; 2012 Jul; 169(11):1023-31. PubMed ID: 22583647 [TBL] [Abstract][Full Text] [Related]
34. Impact of Cluster Zone Leaf Removal on Grapes cv. Regent Polyphenol Content by the UPLC-PDA/MS Method. Mijowska K; Ochmian I; Oszmiański J Molecules; 2016 Dec; 21(12):. PubMed ID: 27973426 [No Abstract] [Full Text] [Related]
35. Effects of Leaf Removal and Applied Water on Flavonoid Accumulation in Grapevine (Vitis vinifera L. cv. Merlot) Berry in a Hot Climate. Yu R; Cook MG; Yacco RS; Watrelot AA; Gambetta G; Kennedy JA; Kurtural SK J Agric Food Chem; 2016 Nov; 64(43):8118-8127. PubMed ID: 27728974 [TBL] [Abstract][Full Text] [Related]
36. Silicates of Potassium and Aluminium (Kaolin); Comparative Foliar Mitigation Treatments and Biochemical Insight on Grape Berry Quality in Singh RK; Afonso J; Nogueira M; Oliveira AA; Cosme F; Falco V Biology (Basel); 2020 Mar; 9(3):. PubMed ID: 32244914 [TBL] [Abstract][Full Text] [Related]
37. Polyphenolic compounds and antioxidants of skin and berry grapes of Greek Vitis vinifera cultivars in relation to climate conditions. Biniari K; Xenaki M; Daskalakis I; Rusjan D; Bouza D; Stavrakaki M Food Chem; 2020 Mar; 307():125518. PubMed ID: 31644976 [TBL] [Abstract][Full Text] [Related]
38. Impact of climate change environmental conditions on the resilience of different formulations of the biocontrol agent Candida sake CPA-1 on grapes. Carbó A; Torres R; Teixidó N; Usall J; Medina A; Magan N Lett Appl Microbiol; 2018 Jul; 67(1):2-8. PubMed ID: 29603307 [TBL] [Abstract][Full Text] [Related]
39. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions. de Rosas I; Ponce MT; Malovini E; Deis L; Cavagnaro B; Cavagnaro P Plant Sci; 2017 May; 258():137-145. PubMed ID: 28330557 [TBL] [Abstract][Full Text] [Related]
40. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey. Eyduran SP; Akin M; Ercisli S; Eyduran E; Maghradze D Biol Res; 2015 Jan; 48(1):2. PubMed ID: 25654659 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]