These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33396431)

  • 1. Additive Manufacturing of β-Tricalcium Phosphate Components via Fused Deposition of Ceramics (FDC).
    Esslinger S; Grebhardt A; Jaeger J; Kern F; Killinger A; Bonten C; Gadow R
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications.
    Vu AA; Burke DA; Bandyopadhyay A; Bose S
    Addit Manuf; 2021 Mar; 39():. PubMed ID: 34307059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers.
    Podgórski R; Wojasiński M; Trepkowska-Mejer E; Ciach T
    Biomater Adv; 2023 Mar; 146():213317. PubMed ID: 36738523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Mechanical and Biological Properties of 3D Printed Polymer Composite and β-Tricalcium Phosphate Scaffold on Human Dental Pulp Stem Cells.
    Cao S; Han J; Sharma N; Msallem B; Jeong W; Son J; Kunz C; Kang HW; Thieringer FM
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds.
    Bose S; Banerjee D; Robertson S; Vahabzadeh S
    Ann Biomed Eng; 2018 Sep; 46(9):1241-1253. PubMed ID: 29728785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allogenic chondrocyte/osteoblast-loaded β-tricalcium phosphate bioceramic scaffolds for articular cartilage defect treatment.
    Wu S; Kai Z; Wang D; Tao L; Zhang P; Wang D; Liu D; Sun S; Zhong J
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1570-1576. PubMed ID: 31007085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research on sintering process of tricalcium phosphate bone tissue engineering scaffold based on three-dimensional printing].
    Man X; Suo H; Liu J; Xu M; Wang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):112-118. PubMed ID: 32096384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds.
    Vivanco J; Aiyangar A; Araneda A; Ploeg HL
    J Mech Behav Biomed Mater; 2012 May; 9():137-52. PubMed ID: 22498292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds.
    Shao H; Sun M; Zhang F; Liu A; He Y; Fu J; Yang X; Wang H; Gou Z
    J Dent Res; 2018 Jan; 97(1):68-76. PubMed ID: 29020507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C
    Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion.
    Slots C; Jensen MB; Ditzel N; Hedegaard MA; Borg SW; Albrektsen O; Thygesen T; Kassem M; Andersen MØ
    Dent Mater; 2017 Feb; 33(2):198-208. PubMed ID: 27979378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.