These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33396435)

  • 1. Titanium Nitride Nanodonuts Synthesized from Natural Ilmenite Ore as a Novel and Efficient Thermoplasmonic Material.
    Thi Le TL; Nguyen LT; Nguyen HH; Nghia NV; Vuong NM; Hieu HN; Thang NV; Le VT; Nguyen VH; Lin PC; Yadav A; Madarevic I; Janssens E; Bui HV; Ngoc LLT
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33396435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Titanium Nitride Nano-enabled Membranes with High Structural Stability for Efficient Photothermal Desalination.
    Farid MU; Kharraz JA; An AK
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3805-3815. PubMed ID: 33444505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Titanium Nitride Tubes Decorated with Ru Nanoparticles as Photo-Thermal Catalyst for CO
    Mateo D; Navarro JC; Khan IS; Ruiz-Martinez J; Gascon J
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoporous Titanium (Oxy)nitride Films as Broadband Solar Absorbers.
    Bricchi BR; Mascaretti L; Garattoni S; Mazza M; Ghidelli M; Naldoni A; Li Bassi A
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18453-18463. PubMed ID: 35436405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive surface plasmon resonance enabled by templated periodic arrays of gold nanodonuts.
    Dou X; Lin YC; Choi B; Wu K; Jiang P
    Nanotechnology; 2016 May; 27(19):195601. PubMed ID: 27040938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable wavelength-selective solar absorber based on refractory TiN nanostructures.
    Nishikawa K; Yatsugi K
    Nanotechnology; 2021 Apr; 32(15):155404. PubMed ID: 33254161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis.
    Naldoni A; Kudyshev ZA; Mascaretti L; Sarmah SP; Rej S; Froning JP; Tomanec O; Yoo JE; Wang D; Kment Š; Montini T; Fornasiero P; Shalaev VM; Schmuki P; Boltasseva A; Zbořil R
    Nano Lett; 2020 May; 20(5):3663-3672. PubMed ID: 32320257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic nanoscale temperature shaping on a single titanium nitride nanostructure.
    Tamura M; Iida T; Setoura K
    Nanoscale; 2022 Sep; 14(35):12589-12594. PubMed ID: 35968839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Solar Light Absorption and Photoelectrochemical Conversion Using TiN Nanoparticle-Incorporated C
    Shinde SL; Ishii S; Dao TD; Sugavaneshwar RP; Takei T; Nanda KK; Nagao T
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2460-2468. PubMed ID: 29271188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Powered Broadband Photodetector using Plasmonic Titanium Nitride.
    Hussain AA; Sharma B; Barman T; Pal AR
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4258-65. PubMed ID: 26807708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Titanium Nitride Facilitates Indium Oxide CO
    Nguyen NT; Yan T; Wang L; Loh JYY; Duchesne PN; Mao C; Li PC; Jelle AA; Xia M; Ghoussoub M; Kherani NP; Lu ZH; Ozin GA
    Small; 2020 Dec; 16(49):e2005754. PubMed ID: 33201581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances.
    Farsinezhad S; Shanavas T; Mahdi N; Askar AM; Kar P; Sharma H; Shankar K
    Nanotechnology; 2018 Apr; 29(15):154006. PubMed ID: 29406316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoplasmonic Semitransparent Nanohole Electrodes.
    Tordera D; Zhao D; Volkov AV; Crispin X; Jonsson MP
    Nano Lett; 2017 May; 17(5):3145-3151. PubMed ID: 28441500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free surface plasmon resonance biosensing with titanium nitride thin film.
    Qiu G; Ng SP; Wu CL
    Biosens Bioelectron; 2018 May; 106():129-135. PubMed ID: 29414079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties and plasmon resonances of titanium nitride nanostructures.
    Cortie MB; Giddings J; Dowd A
    Nanotechnology; 2010 Mar; 21(11):115201. PubMed ID: 20173237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclable Magnetic Titania Nanocomposite from Ilmenite with Enhanced Photocatalytic Activity.
    Hong T; Mao J; Tao F; Lan M
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29168753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles.
    Guler U; Ndukaife JC; Naik GV; Nnanna AG; Kildishev AV; Shalaev VM; Boltasseva A
    Nano Lett; 2013; 13(12):6078-83. PubMed ID: 24279759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoplasmonics in Solar Energy Conversion: Materials, Nanostructured Designs, and Applications.
    Yang B; Li C; Wang Z; Dai Q
    Adv Mater; 2022 Jul; 34(26):e2107351. PubMed ID: 35271744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Interconnected Gyroid Au-CuS Materials for Efficient Solar Steam Generation.
    Sun P; Wang W; Zhang W; Zhang S; Gu J; Yang L; Pantelić D; Jelenković B; Zhang D
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34837-34847. PubMed ID: 32644768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of energy utilization using nanofluid in solar powered membrane distillation.
    Zhang Y; Liu L; Li K; Hou D; Wang J
    Chemosphere; 2018 Dec; 212():554-562. PubMed ID: 30165282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.