BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33396788)

  • 21. Effects of strain and strain-induced α'-martensite on passive films in AISI 304 austenitic stainless steel.
    Lv J; Luo H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():484-90. PubMed ID: 24268285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallographic characterization of steel microstructure using neutron diffraction.
    Tomota Y
    Sci Technol Adv Mater; 2019; 20(1):1189-1206. PubMed ID: 32095166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental and numerical study of mechanical properties of multi-phase medium-Mn TWIP-TRIP steel: influences of strain rate and phase constituents.
    Benzing JT; Liu Y; Zhang X; Luecke WE; Ponge D; Dutta A; Oskay C; Raabe D; Wittig JE
    Acta Mater; 2019; 177():. PubMed ID: 33304199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress-induced detwinning and martensite transformation in an austenite Ni-Mn-Ga alloy with martensite cluster under uniaxial loading.
    Hou L; Niu Y; Dai Y; Ba L; Fautrelle Y; Li Z; Yang B; Esling C; Li X
    IUCrJ; 2019 May; 6(Pt 3):366-372. PubMed ID: 31098018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.
    Cizek P; Whiteman JA; Rainforth WM; Beynon JH
    J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path.
    Liu X; Zhang S; Bao Y; Zhang Z; Yue Z
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural transformations in austenitic stainless steel induced by deuterium implantation: irradiation at 100 K.
    Morozov O; Zhurba V; Neklyudov I; Mats O; Rud A; Chernyak N; Progolaieva V
    Nanoscale Res Lett; 2015; 10():154. PubMed ID: 25852440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of Martensitic Transformation Paths Based on Transformation Potential Calculations.
    Creuziger A; Poling WA; Gnaeupel-Herold T
    Steel Res Int; 2018; 90(1):. PubMed ID: 32831813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of C and N on Strain-Induced Martensite Formation in Fe-15Cr-7Mn-4Ni-0.5Si Austenitic Steel.
    Quitzke C; Huang Q; Biermann H; Volkova O; Wendler M
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Variation Patterns of the Martensitic Hierarchical Microstructure and Mechanical Properties of 35Si2MnCr2Ni3MoV Steel at Different Austenitizing Temperatures.
    Wu Z; Yang C; Chen G; Li Y; Cao X; Cao P; Dong H; Hu C
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controllable Martensite Transformation and Strain-Controlled Fatigue Behavior of a Gradient Nanostructured Austenite Stainless Steel.
    Lei Y; Xu J; Wang Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel -75°C SEM cooling stage: application for martensitic transformation in steel.
    Tsuzazki K; Koyama M; Sasaki R; Nakafuji K; Oie K; Shibata A; Gondo T; Miyazaki H; Akamine H; Nishida M
    Microscopy (Oxf); 2021 Mar; 70(2):250-254. PubMed ID: 32901813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissecting the mechanism of martensitic transformation via atomic-scale observations.
    Yang XS; Sun S; Wu XL; Ma E; Zhang TY
    Sci Rep; 2014 Aug; 4():6141. PubMed ID: 25142283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probabilistic Reconstruction of Austenite Microstructure from Electron Backscatter Diffraction Observations of Martensite.
    Brust A; Payton E; Hobbs T; Sinha V; Yardley V; Niezgoda S
    Microsc Microanal; 2021 Sep; ():1-21. PubMed ID: 34468305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microstructure and Pitting Corrosion of Austenite Stainless Steel after Crack Arrest.
    Zhang Z; Pan G; Jiang Y; Chen S; Zou S; Li W; Xu C; Zhang J
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microstructure Evolution and Mechanical Stability of Retained Austenite in Medium-Mn Steel Deformed at Different Temperatures.
    Kozłowska A; Janik A; Radwański K; Grajcar A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31546804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-Texture Analyses of a Cold-Work Tool Steel for Additive Manufacturing.
    Kang JY; Yun J; Kim B; Choe J; Yang S; Park SJ; Yu JH; Kim YJ
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine microstructure formation in steel under ultrafast heating and cooling.
    Yonemura M; Nishibata H; Fujimura R; Ooura N; Hata K; Fujiwara K; Kawano K; Yamaguchi I; Terai T; Inubushi Y; Inoue I; Yabuuchi T; Tono K; Yabashi M
    Sci Rep; 2022 Feb; 12(1):2237. PubMed ID: 35140299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni
    Zhang C; Zhang Y; Esling C; Zhao X; Zuo L
    IUCrJ; 2017 Sep; 4(Pt 5):700-709. PubMed ID: 28989725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.
    Hossain R; Pahlevani F; Quadir MZ; Sahajwalla V
    Sci Rep; 2016 Oct; 6():34958. PubMed ID: 27725722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.