These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33396900)

  • 1. Numerical Investigation of Effective Thermal Conductivity of Strut-Based Cellular Structures Designed by Spatial Voronoi Tessellation.
    Zhang M; Shang J; Guo S; Hur B; Yue X
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction and Numerical Study of Thermal Performance of Gradient Porous Structures Based on Voronoi Tessellation Design.
    Zhang X; Zhang M; Zhang C; Zhou T; Wu X; Yue X
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Pore Size Variation on Thermal Conductivity of Open-Porous Foams.
    Skibinski J; Cwieka K; Haj Ibrahim S; Wejrzanowski T
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31238492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative Cellular Insulation Barrier on the Basis of Voronoi Tessellation-Influence of Internal Structure Optimization on Thermal Performance.
    Anwajler B; Zielińska S; Witek-Krowiak A
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Voronoi tessellation as a method to design anisotropic and biomimetic implants.
    Deering J; Dowling KI; DiCecco LA; McLean GD; Yu B; Grandfield K
    J Mech Behav Biomed Mater; 2021 Apr; 116():104361. PubMed ID: 33550142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution Law of Structural Form and Heat Transfer Performance of Thermal Insulation System.
    Zhou SX; Li JX; Bao SF; Ding Y; Wei YQ; She AM; Guo ZZ; Dong JL
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the Relationship between Morphology and Thermal Conductivity of Powder Metallurgically Prepared Aluminium Foams.
    Gopinathan A; Jerz J; Kováčik J; Dvorák T
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Insulation Performance of Aerogel Nano-Porous Materials: Characterization and Test Methods.
    Lou F; Dong S; Zhu K; Chen X; Ma Y
    Gels; 2023 Mar; 9(3):. PubMed ID: 36975669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Heat Transfer through Porous Media of Inorganic Intumescent Coating in Cone Calorimeter Testing.
    Kang S; Choi JY; Choi S
    Polymers (Basel); 2019 Jan; 11(2):. PubMed ID: 30960205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved trabecular bone model based on Voronoi tessellation.
    Zhou Y; Isaksson P; Persson C
    J Mech Behav Biomed Mater; 2023 Dec; 148():106172. PubMed ID: 37852087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Conductivity of Ordered Porous Structures Coupling Gas and Solid Phases: A Molecular Dynamics Study.
    Niu D; Gao H
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Mechanical Properties Verification of Gradient Voronoi Scaffold for Bone Tissue Engineering.
    Zhao H; Han Y; Pan C; Yang D; Wang H; Wang T; Zeng X; Su P
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34198927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voronoi cell finite element method for heat conduction analysis of composite materials.
    Chen S; Hu C; Tian J; Tan D; Gong Y; Xia F; Ning S; Zhang R
    Sci Rep; 2024 May; 14(1):12083. PubMed ID: 38802453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical Fractal Model for Calculating Effective Thermal Conductivity of the Fibrous Porous Materials.
    Kan AK; Cao D; Zhang XL
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3200-5. PubMed ID: 26353563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media.
    Wang M; Pan N; Wang J; Chen S
    J Colloid Interface Sci; 2007 Jul; 311(2):562-70. PubMed ID: 17434521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation and Experimental Substantiation of the Thermal Properties of Non-Autoclaved Aerated Concrete with Recycled Concrete Powder.
    Ma X; Li H; Wang D; Li C; Wei Y
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Porosity on the Mechanical Behavior during Uniaxial Compressive Testing on Voronoi-Based Open-Cell Aluminium Foam.
    Sharma V; Grujovic N; Zivic F; Slavkovic V
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Modeling and Inverse Analysis of Thermal Conductivity of Skeletons in SiO
    Zhang XC; Xia XL; Li DH; Sun C
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure Dependence of Effective Thermal Conductivity of EB-PVD TBCs.
    Qiu SY; Wu CW; Huang CG; Ma Y; Guo HB
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Compressive Behavior of Controllable Irregular Porous Scaffolds: Based on Voronoi-Tessellation and for Additive Manufacturing.
    Wang G; Shen L; Zhao J; Liang H; Xie D; Tian Z; Wang C
    ACS Biomater Sci Eng; 2018 Feb; 4(2):719-727. PubMed ID: 33418759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.