These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33397085)

  • 1. Programmable Contractile Actuations of Twisted Spider Dragline Silk Yarns.
    Dong L; Qiao J; Wu Y; Ren M; Wang Y; Shen X; Wei X; Wang X; Di J; Li Q
    ACS Biomater Sci Eng; 2021 Feb; 7(2):482-490. PubMed ID: 33397085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk.
    Blackledge TA; Boutry C; Wong SC; Baji A; Dhinojwala A; Sahni V; Agnarsson I
    J Exp Biol; 2009 Jul; 212(Pt 13):1981-9. PubMed ID: 19525422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercontraction forces in spider dragline silk depend on hydration rate.
    Agnarsson I; Boutry C; Wong SC; Baji A; Dhinojwala A; Sensenig AT; Blackledge TA
    Zoology (Jena); 2009; 112(5):325-31. PubMed ID: 19477107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Changes in Spider Dragline Silk after Repeated Supercontraction-Stretching Processes.
    Hu L; Chen Q; Yao J; Shao Z; Chen X
    Biomacromolecules; 2020 Dec; 21(12):5306-5314. PubMed ID: 33206498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spider dragline silk as torsional actuator driven by humidity.
    Liu D; Tarakanova A; Hsu CC; Yu M; Zheng S; Yu L; Liu J; He Y; Dunstan DJ; Buehler MJ
    Sci Adv; 2019 Mar; 5(3):eaau9183. PubMed ID: 30838327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of stress on the molecular structure and mechanical properties of supercontracted spider dragline silks.
    Dong Q; Fang G; Huang Y; Hu L; Yao J; Shao Z; Ling S; Chen X
    J Mater Chem B; 2020 Jan; 8(1):168-176. PubMed ID: 31789330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two mechanisms for supercontraction in Nephila spider dragline silk.
    Guan J; Vollrath F; Porter D
    Biomacromolecules; 2011 Nov; 12(11):4030-5. PubMed ID: 21951163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Skin Layers on Mechanical Properties and Supercontraction of Spider Dragline Silk Fiber.
    Yazawa K; Malay AD; Masunaga H; Numata K
    Macromol Biosci; 2019 Mar; 19(3):e1800220. PubMed ID: 30230228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Origin of Supercontraction in Spider Silk.
    Cohen N; Levin M; Eisenbach CD
    Biomacromolecules; 2021 Feb; 22(2):993-1000. PubMed ID: 33481568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-related increase in inducible mechanical variability of major ampullate silk in a huntsman spider (Araneae: Sparassidae).
    Piorkowski D; Liao CP; Blackledge TA; Tso IM
    Naturwissenschaften; 2021 May; 108(3):22. PubMed ID: 33945014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk.
    Holland GP; Lewis RV; Yarger JL
    J Am Chem Soc; 2004 May; 126(18):5867-72. PubMed ID: 15125679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibre science: supercontraction stress in wet spider dragline.
    Bell FI; McEwen IJ; Viney C
    Nature; 2002 Mar; 416(6876):37. PubMed ID: 11882884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercontracted spider dragline silk: a solid-state NMR study of the local structure.
    van Beek JD; Kümmerlen J; Vollrath F; Meier BH
    Int J Biol Macromol; 1999; 24(2-3):173-8. PubMed ID: 10342762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity.
    Yazawa K; Sasaki U
    Int J Biol Macromol; 2021 Jan; 168():550-557. PubMed ID: 33333091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the Molecular Requirements for Macroscopic Silk Supercontraction.
    Giesa T; Schuetz R; Fratzl P; Buehler MJ; Masic A
    ACS Nano; 2017 Oct; 11(10):9750-9758. PubMed ID: 28846384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.
    Boutry C; Blackledge TA
    J Exp Biol; 2010 Oct; 213(Pt 20):3505-14. PubMed ID: 20889831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercontraction of spider dragline silk for humidity sensing.
    Liu Z; Ji X; Zhang Y; Zhang M; Song H; Zhang Y; Yang X; Zhang J; Yang J; Yuan L
    Opt Express; 2021 Aug; 29(18):28864-28871. PubMed ID: 34615007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk.
    Jelinski LW; Blye A; Liivak O; Michal C; LaVerde G; Seidel A; Shah N; Yang Z
    Int J Biol Macromol; 1999; 24(2-3):197-201. PubMed ID: 10342765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet webs work better: humidity, supercontraction and the performance of spider orb webs.
    Boutry C; Blackledge TA
    J Exp Biol; 2013 Oct; 216(Pt 19):3606-10. PubMed ID: 23788700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.