These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33397107)

  • 1. Tunable Artificial Enzyme-Cofactor Complex for Selective Hydrolysis of Acetals.
    Bose I; Fa S; Zhao Y
    J Org Chem; 2021 Jan; 86(2):1701-1711. PubMed ID: 33397107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis-Driven Viscoelastic Transition in Triblock Copolyether Hydrogels with Acetal Pendants.
    Baek J; Kim S; Son I; Choi SH; Kim BS
    ACS Macro Lett; 2021 Aug; 10(8):1080-1087. PubMed ID: 35549123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Controlled Nanoparticle Catalysts for Highly Selective Tandem Henry Reaction from Mixtures.
    Bose I; Zhao Y
    ACS Catal; 2020 Dec; 10(23):13973-13977. PubMed ID: 34094653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-selective electrooxidation of methylarenes to aromatic acetals.
    Xiong P; Zhao HB; Fan XT; Jie LH; Long H; Xu P; Liu ZJ; Wu ZJ; Cheng J; Xu HC
    Nat Commun; 2020 Jun; 11(1):2706. PubMed ID: 32483217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem Aldol Reaction from Acetal Mixtures by an Artificial Enzyme with Site-Isolated Acid and Base Functionalities.
    Bose I; Zhao Y
    ACS Appl Polym Mater; 2021 May; 3(5):2776-2784. PubMed ID: 34447941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Tuning in Synthetic Glycosidase for Selective Hydrolysis of Alkyl and Aryl Glycosides.
    Chen K; Zhao Y
    J Org Chem; 2022 Mar; 87(6):4195-4203. PubMed ID: 35254827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Glycosidase Distinguishing Glycan and Glycosidic Linkage in Its Catalytic Hydrolysis.
    Li X; Zhao Y
    ACS Catal; 2020 Dec; 10(23):13800-13808. PubMed ID: 34123483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers.
    Gillies ER; Jonsson TB; Fréchet JM
    J Am Chem Soc; 2004 Sep; 126(38):11936-43. PubMed ID: 15382929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanded scope of synthetic bacteriochlorins via improved acid catalysis conditions and diverse dihydrodipyrrin-acetals.
    Krayer M; Ptaszek M; Kim HJ; Meneely KR; Fan D; Secor K; Lindsey JS
    J Org Chem; 2010 Feb; 75(4):1016-39. PubMed ID: 20088604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Regio- and Stereoselective Intramolecular Rearrangement of Glycidol Acetal to Alkoxy Cyclic Acetals.
    Johny M; Philip RM; Rajendar G
    Org Lett; 2022 Aug; 24(33):6165-6170. PubMed ID: 35960602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The acid hydrolysis mechanism of acetals catalyzed by a supramolecular assembly in basic solution.
    Pluth MD; Bergman RG; Raymond KN
    J Org Chem; 2009 Jan; 74(1):58-63. PubMed ID: 19113901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bait-and-Switch Method for the Construction of Artificial Esterases for Substrate-Selective Hydrolysis.
    Hu L; Zhao Y
    Chemistry; 2019 Jun; 25(32):7702-7710. PubMed ID: 30883963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel-Catalyzed Conversion of Amides to Carboxylic Acids.
    Knapp RR; Bulger AS; Garg NK
    Org Lett; 2020 Apr; 22(7):2833-2837. PubMed ID: 32208664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of alkoxy groups on rates of acetal hydrolysis and tosylate solvolysis: electrostatic stabilization of developing oxocarbenium ion intermediates and neighboring-group participation to form oxonium ions.
    Garcia A; Otte DA; Salamant WA; Sanzone JR; Woerpel KA
    J Org Chem; 2015 May; 80(9):4470-80. PubMed ID: 25806832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of polymer-supported pi-acid catalysts].
    Masaki Y
    Yakugaku Zasshi; 2006 Jan; 126(1):1-26. PubMed ID: 16394646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the active site for hydrolysis of aryl amides and choline esters by human cholinesterases.
    Darvesh S; McDonald RS; Darvesh KV; Mataija D; Mothana S; Cook H; Carneiro KM; Richard N; Walsh R; Martin E
    Bioorg Med Chem; 2006 Jul; 14(13):4586-99. PubMed ID: 16504521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic conversion of 2-propylpentanal acetals to valproic acid in vitro. Model prodrugs of carboxylic acid agents.
    Vicchio D; Callery PS
    Drug Metab Dispos; 1989; 17(5):513-7. PubMed ID: 2573494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective protonation of α-hetero carboxylic acid-derived ketene disilyl acetals under chiral ionic Brønsted acid catalysis.
    Uraguchi D; Kizu T; Ohira Y; Ooi T
    Chem Commun (Camb); 2014 Nov; 50(88):13489-91. PubMed ID: 25234847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3,4-(4-Methoxybenzo):8,9-benzobicyclo[4.4.1]undeca-3,8-dien-11-one ethylene acetal.
    Liu X; Kilner CA; Halcrow MA
    Acta Crystallogr C; 2002 Apr; 58(Pt 4):O218-9. PubMed ID: 11932547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton-mediated chemistry and catalysis in a self-assembled supramolecular host.
    Pluth MD; Bergman RG; Raymond KN
    Acc Chem Res; 2009 Oct; 42(10):1650-9. PubMed ID: 19591461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.