These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33397200)

  • 1. Computational studies of membrane pore formation induced by Pin2.
    Velasco-Bolom JL; Garduño-Juárez R
    J Biomol Struct Dyn; 2022 Jul; 40(11):5060-5068. PubMed ID: 33397200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial peptides in toroidal and cylindrical pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1485-93. PubMed ID: 20403332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3.
    Kim C; Spano J; Park EK; Wi S
    Biochim Biophys Acta; 2009 Jul; 1788(7):1482-96. PubMed ID: 19409370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial peptide interactions with bacterial cell membranes.
    Khavani M; Mehranfar A; Mofrad MRK
    J Biomol Struct Dyn; 2024 Jan; ():1-14. PubMed ID: 38263741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording.
    Priyadarshini D; Ivica J; Separovic F; de Planque MRR
    Biophys Chem; 2022 Feb; 281():106721. PubMed ID: 34808479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding profiles of antimicrobial scorpion venom-derived peptides on hydrophobic surfaces: a molecular dynamics study.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2020 Jul; 38(10):2928-2938. PubMed ID: 31345123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2[GVG] in biological model membranes.
    Bertrand B; Munusamy S; Espinosa-Romero JF; Corzo G; Arenas Sosa I; Galván-Hernández A; Ortega-Blake I; Hernández-Adame PL; Ruiz-García J; Velasco-Bolom JL; Garduño-Juárez R; Munoz-Garay C
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183105. PubMed ID: 31682816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The "pre-assembled state" of magainin 2 lysine-linked dimer determines its enhanced antimicrobial activity.
    Lorenzón EN; Nobre TM; Caseli L; Cilli EM; da Hora GCA; Soares TA; Oliveira ON
    Colloids Surf B Biointerfaces; 2018 Jul; 167():432-440. PubMed ID: 29705666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the mechanism of photosensitizer conjugation on membrane perturbation of antimicrobial peptide: A multiscale molecular simulation study.
    Liu Y; Song M; Wu J; Xie S; Zhou Y; Liu L; Huang M; Jiang L; Xu P; Li J
    Int J Biol Macromol; 2023 Aug; 247():125698. PubMed ID: 37414326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein arcs may form stable pores in lipid membranes.
    Prieto L; He Y; Lazaridis T
    Biophys J; 2014 Jan; 106(1):154-61. PubMed ID: 24411247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptides bind more strongly to membrane pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1494-502. PubMed ID: 20188066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers.
    Jafari M; Mehrnejad F; Doustdar F
    PLoS One; 2017; 12(11):e0187216. PubMed ID: 29125878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2012 May; 1818(5):1274-83. PubMed ID: 22290189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling peptide binding to anionic membrane pores.
    He Y; Prieto L; Lazaridis T
    J Comput Chem; 2013 Jun; 34(17):1463-75. PubMed ID: 23580260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin.
    Ramamoorthy A; Thennarasu S; Lee DK; Tan A; Maloy L
    Biophys J; 2006 Jul; 91(1):206-16. PubMed ID: 16603496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organizations of melittin peptides after spontaneous penetration into cell membranes.
    Sun L; Wang S; Tian F; Zhu H; Dai L
    Biophys J; 2022 Nov; 121(22):4368-4381. PubMed ID: 36199252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.