BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

793 related articles for article (PubMed ID: 33397369)

  • 1. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy.
    Wang L; Cai Y; Jian L; Cheung CW; Zhang L; Xia Z
    Cardiovasc Diabetol; 2021 Jan; 20(1):2. PubMed ID: 33397369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Sodium-Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice.
    Croteau D; Luptak I; Chambers JM; Hobai I; Panagia M; Pimentel DR; Siwik DA; Qin F; Colucci WS
    J Am Heart Assoc; 2021 Jul; 10(13):e019995. PubMed ID: 34169737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of peroxisome proliferator-activated receptor-alpha alleviates myocardial injury in diabetic cardiomyopathy by downregulating 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 expression.
    Wang L; Bi X; Han J
    IUBMB Life; 2020 Sep; 72(9):1997-2009. PubMed ID: 32734614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats.
    Trang NN; Chung CC; Lee TW; Cheng WL; Kao YH; Huang SY; Lee TI; Chen YJ
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33503985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Telmisartan improves cardiac fibrosis in diabetes through peroxisome proliferator activated receptor δ (PPARδ): from bedside to bench.
    Chang WT; Cheng JT; Chen ZC
    Cardiovasc Diabetol; 2016 Aug; 15(1):113. PubMed ID: 27519769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway.
    Liu ZW; Wang JK; Qiu C; Guan GC; Liu XH; Li SJ; Deng ZR
    Acta Pharmacol Sin; 2015 Mar; 36(3):323-33. PubMed ID: 25619390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low molecular weight fucoidan alleviates cardiac dysfunction in diabetic Goto-Kakizaki rats by reducing oxidative stress and cardiomyocyte apoptosis.
    Yu X; Zhang Q; Cui W; Zeng Z; Yang W; Zhang C; Zhao H; Gao W; Wang X; Luo D
    J Diabetes Res; 2014; 2014():420929. PubMed ID: 25525607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs.
    Packer M
    Cardiovasc Diabetol; 2020 May; 19(1):62. PubMed ID: 32404204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth differentiation factor 11 regulates high glucose-induced cardiomyocyte pyroptosis and diabetic cardiomyopathy by inhibiting inflammasome activation.
    Zhang J; Wang G; Shi Y; Liu X; Liu S; Chen W; Ning Y; Cao Y; Zhao Y; Li M
    Cardiovasc Diabetol; 2024 May; 23(1):160. PubMed ID: 38715043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of exenatide on cardiac function, perfusion, and energetics in type 2 diabetic patients with cardiomyopathy: a randomized controlled trial against insulin glargine.
    Chen WJY; Diamant M; de Boer K; Harms HJ; Robbers LFHJ; van Rossum AC; Kramer MHH; Lammertsma AA; Knaapen P
    Cardiovasc Diabetol; 2017 May; 16(1):67. PubMed ID: 28526033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of energy utilization in diabetic cardiomyopathy; a mini review.
    Nirengi S; Peres Valgas da Silva C; Stanford KI
    Curr Opin Pharmacol; 2020 Oct; 54():82-90. PubMed ID: 32980777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy.
    Wang SY; Zhu S; Wu J; Zhang M; Xu Y; Xu W; Cui J; Yu B; Cao W; Liu J
    J Mol Med (Berl); 2020 Feb; 98(2):245-261. PubMed ID: 31897508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivation of peroxisome proliferator-activated receptor alpha in spontaneously hypertensive rat: age-associated paradoxical effect on the heart.
    Purushothaman S; Sathik MM; Nair RR
    J Cardiovasc Pharmacol; 2011 Sep; 58(3):254-62. PubMed ID: 21654328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Hydrogen Sulfide Preconditioning-Associated Protection Against Ischemia-Reperfusion Injury Differs in Diabetic Heart That Develops Myopathy.
    Ansari M; Kurian GA
    Cardiovasc Toxicol; 2020 Apr; 20(2):155-167. PubMed ID: 31317389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction.
    Yurista SR; Silljé HHW; Oberdorf-Maass SU; Schouten EM; Pavez Giani MG; Hillebrands JL; van Goor H; van Veldhuisen DJ; de Boer RA; Westenbrink BD
    Eur J Heart Fail; 2019 Jul; 21(7):862-873. PubMed ID: 31033127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes.
    Monji A; Mitsui T; Bando YK; Aoyama M; Shigeta T; Murohara T
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H295-304. PubMed ID: 23709595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MiR-30c/PGC-1β protects against diabetic cardiomyopathy via PPARα.
    Yin Z; Zhao Y; He M; Li H; Fan J; Nie X; Yan M; Chen C; Wang DW
    Cardiovasc Diabetol; 2019 Jan; 18(1):7. PubMed ID: 30635067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy.
    Arow M; Waldman M; Yadin D; Nudelman V; Shainberg A; Abraham NG; Freimark D; Kornowski R; Aravot D; Hochhauser E; Arad M
    Cardiovasc Diabetol; 2020 Jan; 19(1):7. PubMed ID: 31924211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astragalus polysaccharides repress myocardial lipotoxicity in a PPARalpha-dependent manner in vitro and in vivo in mice.
    Chen W; Lai Y; Wang L; Xia Y; Chen W; Zhao X; Yu M; Li Y; Zhang Y; Ye H
    J Diabetes Complications; 2015 Mar; 29(2):164-75. PubMed ID: 25499591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.