BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33397619)

  • 1. Regulation of secondary metabolite biosynthesis in Monascus purpureus via cofactor metabolic engineering strategies.
    Liu J; Wu J; Cai X; Zhang S; Liang Y; Lin Q
    Food Microbiol; 2021 May; 95():103689. PubMed ID: 33397619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus.
    Zhang L; Li Z; Dai B; Zhang W; Yuan Y
    Acta Biol Hung; 2013 Sep; 64(3):385-94. PubMed ID: 24013899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Frequency Magnetic Field of Appropriate Strengths Changed Secondary Metabolite Production and Na
    Xiong X; Zhen Z; Liu Y; Gao M; Wang S; Li L; Zhang J
    Bioelectromagnetics; 2020 May; 41(4):289-297. PubMed ID: 32220027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MptriA, an Acetyltransferase Gene Involved in Pigment Biosynthesis in M. purpureus YY-1.
    Liang B; Du X; Li P; Sun C; Wang S
    J Agric Food Chem; 2018 Apr; 66(16):4129-4138. PubMed ID: 29633617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergence of metabolites in three phylogenetically close Monascus species (M. pilosus, M. ruber, and M. purpureus) based on secondary metabolite biosynthetic gene clusters.
    Higa Y; Kim YS; Altaf-Ul-Amin M; Huang M; Ono N; Kanaya S
    BMC Genomics; 2020 Oct; 21(1):679. PubMed ID: 32998685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome shuffling improves pigment and other bioactive compound production in Monascus purpureus.
    Ghosh S; Dam B
    Appl Microbiol Biotechnol; 2020 Dec; 104(24):10451-10463. PubMed ID: 33165660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor.
    Kongruang S
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):93-9. PubMed ID: 20814729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducing red pigment and inhibiting citrinin production by adding lanthanum(III) ion in Monascus purpureus fermentation.
    Liu HQ; Huang ZF; Yang SZ; Tian XF; Wu ZQ
    Appl Microbiol Biotechnol; 2021 Mar; 105(5):1905-1912. PubMed ID: 33576885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of pigments by addition of surfactants in submerged fermentation of Monascus purpureus H1102.
    Wang Y; Zhang B; Lu L; Huang Y; Xu G
    J Sci Food Agric; 2013 Oct; 93(13):3339-44. PubMed ID: 23595359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation.
    Zhou Z; Yin Z; Hu X
    Biotechnol Appl Biochem; 2014; 61(6):716-23. PubMed ID: 24673365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber.
    Wang L; Dai Y; Chen W; Shao Y; Chen F
    J Agric Food Chem; 2016 Dec; 64(50):9506-9514. PubMed ID: 27998068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1.
    Liang B; Du X; Li P; Guo H; Sun C; Gao J; Wang S
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7281-7292. PubMed ID: 28831532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.
    Li YP; Tang X; Wu W; Xu Y; Huang ZB; He QH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):577-83. PubMed ID: 25482072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Monascus yellow pigments production by activating the cAMP signalling pathway in Monascus purpureus HJ11.
    Liu J; Du Y; Ma H; Pei X; Li M
    Microb Cell Fact; 2020 Dec; 19(1):224. PubMed ID: 33287814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp.
    Pattanagul P; Pinthong R; Phianmongkhol A; Tharatha S
    Int J Food Microbiol; 2008 Aug; 126(1-2):20-3. PubMed ID: 18538878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical optimization for Monacolin K and yellow pigment production and citrinin reduction by Monascus purpureus in solid-state fermentation.
    Jirasatid S; Nopharatana M; Kitsubun P; Vichitsoonthonkul T; Tongta A
    J Microbiol Biotechnol; 2013 Mar; 23(3):364-74. PubMed ID: 23462010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a Monascus purpureus mutant showing lower citrinin and higher pigment production by replacement of ctnA with pks1 without using vector and resistance gene.
    Xu MJ; Yang ZL; Liang ZZ; Zhou SN
    J Agric Food Chem; 2009 Oct; 57(20):9764-8. PubMed ID: 20560630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of secondary metabolite gene clusters and chitin biosynthesis pathways of Monascus purpureus with high production of pigment and citrinin based on whole-genome sequencing.
    Zhang S; Zeng X; Lin Q; Liu J
    PLoS One; 2022; 17(6):e0263905. PubMed ID: 35648754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iTRAQ-Based Quantitative Proteomic Analysis Reveals Changes in Metabolite Biosynthesis in
    Zhang J; Liu Y; Li L; Gao M
    Toxins (Basel); 2018 Oct; 10(11):. PubMed ID: 30380661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of mutation in Monascus purpureus isolated from Thai fermented food to develop low citrinin-producing strain for application in the red koji industry.
    Ketkaeo S; Sanpamongkolchai W; Morakul S; Baba S; Kobayashi G; Goto M
    J Gen Appl Microbiol; 2020 Aug; 66(3):163-168. PubMed ID: 31462600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.