BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

654 related articles for article (PubMed ID: 33397727)

  • 21. Transposable elements in the genomes: parasites, junks or drivers of evolution?
    Gbadegesin MA
    Afr J Med Med Sci; 2012 Dec; 41 Suppl():13-25. PubMed ID: 23678632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of transposable elements on the evolution of mammalian gene regulation.
    Medstrand P; van de Lagemaat LN; Dunn CA; Landry JR; Svenback D; Mager DL
    Cytogenet Genome Res; 2005; 110(1-4):342-52. PubMed ID: 16093686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transposable elements contribute to activation of maize genes in response to abiotic stress.
    Makarevitch I; Waters AJ; West PT; Stitzer M; Hirsch CN; Ross-Ibarra J; Springer NM
    PLoS Genet; 2015 Jan; 11(1):e1004915. PubMed ID: 25569788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin.
    Fontanillas P; Hartl DL; Reuter M
    PLoS Genet; 2007 Nov; 3(11):e210. PubMed ID: 18081425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statistical learning quantifies transposable element-mediated cis-regulation.
    Pulver C; Grun D; Duc J; Sheppard S; Planet E; Coudray A; de Fondeville R; Pontis J; Trono D
    Genome Biol; 2023 Nov; 24(1):258. PubMed ID: 37950299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes.
    Zhang X; Zhao M; McCarty DR; Lisch D
    Nucleic Acids Res; 2020 Jul; 48(12):6685-6698. PubMed ID: 32442316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong?
    de Souza FS; Franchini LF; Rubinstein M
    Mol Biol Evol; 2013 Jun; 30(6):1239-51. PubMed ID: 23486611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling transposable element dynamics with fragmentation equations.
    Banuelos M; Sindi S
    Math Biosci; 2018 Aug; 302():46-66. PubMed ID: 29787745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transposable elements and their role in aging.
    Yushkova E; Moskalev A
    Ageing Res Rev; 2023 Apr; 86():101881. PubMed ID: 36773759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary history of mammalian transposons determined by genome-wide defragmentation.
    Giordano J; Ge Y; Gelfand Y; Abrusán G; Benson G; Warburton PE
    PLoS Comput Biol; 2007 Jul; 3(7):e137. PubMed ID: 17630829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transposable Elements Cross Kingdom Boundaries and Contribute to Inflammation and Ageing: Somatic Acquisition of Foreign Transposable Elements as a Catalyst of Genome Instability, Epigenetic Dysregulation, Inflammation, Senescence, and Ageing.
    Chalmers TJ; Wu LE
    Bioessays; 2020 Mar; 42(3):e1900197. PubMed ID: 31994769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transposable elements as a significant source of transcription regulating signals.
    Thornburg BG; Gotea V; Makałowski W
    Gene; 2006 Jan; 365():104-10. PubMed ID: 16376497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Massive contribution of transposable elements to mammalian regulatory sequences.
    Rayan NA; Del Rosario RCH; Prabhakar S
    Semin Cell Dev Biol; 2016 Sep; 57():51-56. PubMed ID: 27174439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Widespread contribution of transposable elements to the innovation of gene regulatory networks.
    Sundaram V; Cheng Y; Ma Z; Li D; Xing X; Edge P; Snyder MP; Wang T
    Genome Res; 2014 Dec; 24(12):1963-76. PubMed ID: 25319995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The genomic ecosystem of transposable elements in maize.
    Stitzer MC; Anderson SN; Springer NM; Ross-Ibarra J
    PLoS Genet; 2021 Oct; 17(10):e1009768. PubMed ID: 34648488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts.
    Bousios A; Gaut BS
    Curr Opin Plant Biol; 2016 Apr; 30():123-33. PubMed ID: 26950253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and functional annotation of nested transposable elements in eukaryotic genomes.
    Gao C; Xiao M; Ren X; Hayward A; Yin J; Wu L; Fu D; Li J
    Genomics; 2012 Oct; 100(4):222-30. PubMed ID: 22800764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transposable elements: all mobile, all different, some stress responsive, some adaptive?
    Lanciano S; Mirouze M
    Curr Opin Genet Dev; 2018 Apr; 49():106-114. PubMed ID: 29705597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mammalian genome evolution as a result of epigenetic regulation of transposable elements.
    Buckley RM; Adelson DL
    Biomol Concepts; 2014 Jun; 5(3):183-94. PubMed ID: 25372752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the regulatory potential of transposable elements using chromatin accessibility profiles of maize transposons.
    Noshay JM; Marand AP; Anderson SN; Zhou P; Mejia Guerra MK; Lu Z; O'Connor CH; Crisp PA; Hirsch CN; Schmitz RJ; Springer NM
    Genetics; 2021 Mar; 217(1):1-13. PubMed ID: 33683350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.