BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33397940)

  • 1. Machine learning enables design automation of microfluidic flow-focusing droplet generation.
    Lashkaripour A; Rodriguez C; Mehdipour N; Mardian R; McIntyre D; Ortiz L; Campbell J; Densmore D
    Nat Commun; 2021 Jan; 12(1):25. PubMed ID: 33397940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design automation of microfluidic single and double emulsion droplets with machine learning.
    Lashkaripour A; McIntyre DP; Calhoun SGK; Krauth K; Densmore DM; Fordyce PM
    Nat Commun; 2024 Jan; 15(1):83. PubMed ID: 38167827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatility and stability optimization of flow-focusing droplet generators
    McIntyre D; Lashkaripour A; Arguijo D; Fordyce P; Densmore D
    Lab Chip; 2023 Nov; 23(23):4997-5008. PubMed ID: 37909215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-Aided Design of Microfluidic Circuits.
    Tsur EE
    Annu Rev Biomed Eng; 2020 Jun; 22():285-307. PubMed ID: 32343907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-Aided Microdroplets Breakup Characteristic Prediction in Flow-Focusing Microdevices by Incorporating Variations of Cross-Flow Tilt Angles.
    Talebjedi B; Abouei Mehrizi A; Talebjedi B; Mohseni SS; Tasnim N; Hoorfar M
    Langmuir; 2022 Aug; 38(34):10465-10477. PubMed ID: 35973231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning for microfluidic design and control.
    McIntyre D; Lashkaripour A; Fordyce P; Densmore D
    Lab Chip; 2022 Aug; 22(16):2925-2937. PubMed ID: 35904162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system.
    Mottaghi S; Nazari M; Fattahi SM; Nazari M; Babamohammadi S
    Biomed Microdevices; 2020 Sep; 22(3):61. PubMed ID: 32876861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization.
    Coelho BJ; Neto JP; Sieira B; Moura AT; Fortunato E; Martins R; Baptista PV; Igreja R; Águas H
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems.
    Kim M; Leong CM; Pan M; Blauch LR; Tang SKY
    SLAS Technol; 2017 Oct; 22(5):529-535. PubMed ID: 28402212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Intersection Angle of Input Channels in Droplet Generators.
    Kim GB; Park YR; Kim SJ; Park KH
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards an active droplet-based microfluidic platform for programmable fluid handling.
    Cao X; Buryska T; Yang T; Wang J; Fischer P; Streets A; Stavrakis S; deMello A
    Lab Chip; 2023 Apr; 23(8):2029-2038. PubMed ID: 37000567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance tuning of microfluidic flow-focusing droplet generators.
    Lashkaripour A; Rodriguez C; Ortiz L; Densmore D
    Lab Chip; 2019 Mar; 19(6):1041-1053. PubMed ID: 30762047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach for integrating droplet generation and detection in digital polymerase chain reaction applications based on a bifunctional microfluidic cross-structure.
    Wang J; Lyu X; Zhang X; Wang S; Zeng W; Yang T; Wang B; Luo G
    Talanta; 2024 Jan; 267():125240. PubMed ID: 37778182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Materials and methods for droplet microfluidic device fabrication.
    Elvira KS; Gielen F; Tsai SSH; Nightingale AM
    Lab Chip; 2022 Mar; 22(5):859-875. PubMed ID: 35170611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics.
    Langer K; Joensson HN
    SLAS Technol; 2020 Apr; 25(2):111-122. PubMed ID: 31561747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging.
    Zhang H; Guzman AR; Wippold JA; Li Y; Dai J; Huang C; Han A
    Lab Chip; 2020 Nov; 20(21):3948-3959. PubMed ID: 32935710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet Combinations: A Scalable Microfluidic Platform for Biochemical Assays.
    Cliffe FE; Lyons M; Murphy DC; McInerney L; Hurley N; Galvin MA; Mulqueen J; Bible LB; Marella C; Kelleher M; O'Sullivan A; Fearnhead HO; O'Connell E; Davies M
    SLAS Technol; 2020 Apr; 25(2):140-150. PubMed ID: 31665958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.