These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33397946)

  • 1. Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces.
    Lee SW; Kim JM; Park W; Lee H; Lee GR; Jung Y; Jung YS; Park JY
    Nat Commun; 2021 Jan; 12(1):40. PubMed ID: 33397946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide.
    Kim H; Kim YJ; Jung YS; Park JY
    Nanoscale Adv; 2020 Oct; 2(10):4410-4416. PubMed ID: 36132908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Nanoscale Interfaces of Metal/Oxide Nanowires to Control Catalytic Activity.
    Song HC; Lee GR; Jeon K; Lee H; Lee SW; Jung YS; Park JY
    ACS Nano; 2020 Jul; 14(7):8335-8342. PubMed ID: 32539337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic nanodiode: detecting continuous electron flow at oxide-metal interfaces generated by a gas-phase exothermic reaction.
    Park JY; Somorjai GA
    Chemphyschem; 2006 Jul; 7(7):1409-13. PubMed ID: 16739158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode.
    Lee H; Yoon S; Jo J; Jeon B; Hyeon T; An K; Park JY
    Faraday Discuss; 2019 May; 214(0):353-364. PubMed ID: 30810549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot Electron Transport on Three-Dimensional Pt/Mesoporous TiO
    Jeon B; Lee H; Goddeti KC; Park JY
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15152-15159. PubMed ID: 30939872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing hot electron flow generated on Pt nanoparticles with Au/TiO2 Schottky diodes during catalytic CO oxidation.
    Park JY; Lee H; Renzas JR; Zhang Y; Somorjai GA
    Nano Lett; 2008 Aug; 8(8):2388-92. PubMed ID: 18572970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspersing CeO
    Yoo M; Kang E; Ha H; Yun J; Choi H; Lee JH; Kim TJ; Min J; Choi JS; Lee KS; Jung N; Kim S; Kim C; Yu YS; Kim HY
    J Phys Chem Lett; 2022 Feb; 13(7):1719-1725. PubMed ID: 35156829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous hot electron generation in Pt/TiO2, Pd/TiO2, and Pt/GaN catalytic nanodiodes from oxidation of carbon monoxide.
    Ji XZ; Somorjai GA
    J Phys Chem B; 2005 Dec; 109(47):22530-5. PubMed ID: 16853934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction.
    Lee H; Nedrygailov II; Lee YK; Lee C; Choi H; Choi JS; Choi CG; Park JY
    Nano Lett; 2016 Mar; 16(3):1650-6. PubMed ID: 26910271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles.
    Lee H; Lim J; Lee C; Back S; An K; Shin JW; Ryoo R; Jung Y; Park JY
    Nat Commun; 2018 Jun; 9(1):2235. PubMed ID: 29884825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Hot Electron Generation at the Solid-Liquid Interface Is Different from the Solid-Gas Interface.
    Lee SW; Kim H; Park JY
    Nano Lett; 2023 Jun; 23(11):5373-5380. PubMed ID: 36930862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.
    An K; Zhang Q; Alayoglu S; Musselwhite N; Shin JY; Somorjai GA
    Nano Lett; 2014 Aug; 14(8):4907-12. PubMed ID: 25078630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Hot Electron Flow and Catalytic Synergy by Engineering Core-Shell Structures on Au-Pd Nanocatalysts.
    Jeon B; Kim D; Kim TS; Lee HK; Park JY
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37927055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation.
    Goddeti KC; Lee H; Jeon B; Park JY
    Chem Commun (Camb); 2018 Aug; 54(65):8968-8971. PubMed ID: 29987273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes.
    Jeon B; Lee C; Park JY
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9252-9259. PubMed ID: 33587596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.