These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33398014)

  • 1. Machine learned features from density of states for accurate adsorption energy prediction.
    Fung V; Hu G; Ganesh P; Sumpter BG
    Nat Commun; 2021 Jan; 12(1):88. PubMed ID: 33398014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts.
    Back S; Yoon J; Tian N; Zhong W; Tran K; Ulissi ZW
    J Phys Chem Lett; 2019 Aug; 10(15):4401-4408. PubMed ID: 31310543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors.
    Andersen M; Reuter K
    Acc Chem Res; 2021 Jun; 54(12):2741-2749. PubMed ID: 34080415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-Learning-Augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening.
    Ma X; Li Z; Achenie LE; Xin H
    J Phys Chem Lett; 2015 Sep; 6(18):3528-33. PubMed ID: 26722718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Group and Period-Based Representations for Improved Machine Learning Prediction of Heterogeneous Alloy Catalysts.
    Li X; Chiong R; Page AJ
    J Phys Chem Lett; 2021 Jun; 12(21):5156-5162. PubMed ID: 34032450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-Molecule Adsorption Energy Predictions for High-Throughput Screening of Electrocatalysts.
    Raghavan S; Chaplin BP; Mehraeen S
    J Chem Inf Model; 2023 Sep; 63(17):5529-5538. PubMed ID: 37625148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Prediction of H Adsorption Energies on Ag Alloys.
    Hoyt RA; Montemore MM; Fampiou I; Chen W; Tritsaris G; Kaxiras E
    J Chem Inf Model; 2019 Apr; 59(4):1357-1365. PubMed ID: 30897905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learning.
    Li X; Chiong R; Hu Z; Cornforth D; Page AJ
    J Chem Theory Comput; 2019 Dec; 15(12):6882-6894. PubMed ID: 31503488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals.
    Noh J; Gu GH; Kim S; Jung Y
    J Chem Inf Model; 2020 Apr; 60(4):1996-2003. PubMed ID: 32208718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks.
    Palizhati A; Zhong W; Tran K; Back S; Ulissi ZW
    J Chem Inf Model; 2019 Nov; 59(11):4742-4749. PubMed ID: 31644279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Segregation Energy in Single Atom Alloys Using Physics and Machine Learning.
    Salem M; Cowan MJ; Mpourmpakis G
    ACS Omega; 2022 Feb; 7(5):4471-4481. PubMed ID: 35155939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multiple Filter Based Neural Network Approach to the Extrapolation of Adsorption Energies on Metal Surfaces for Catalysis Applications.
    Chowdhury AJ; Yang W; Abdelfatah KE; Zare M; Heyden A; Terejanu GA
    J Chem Theory Comput; 2020 Feb; 16(2):1105-1114. PubMed ID: 31962041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
    Janet JP; Duan C; Nandy A; Liu F; Kulik HJ
    Acc Chem Res; 2021 Feb; 54(3):532-545. PubMed ID: 33480674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning and Scaling Laws for Prediction of Accurate Adsorption Energy.
    Nayak S; Bhattacharjee S; Choi JH; Lee SC
    J Phys Chem A; 2020 Jan; 124(1):247-254. PubMed ID: 31809047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing Cheap but Useful Machine Learning-Based Models for Investigating High-Entropy Alloy Catalysts.
    Sun C; Goel R; Kulkarni AR
    Langmuir; 2024 Feb; 40(7):3691-3701. PubMed ID: 38314715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A prediction model for CO
    Cao X; Luo W; Liu H
    RSC Adv; 2024 Apr; 14(17):12235-12246. PubMed ID: 38628487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the origin of inter-adsorbate interactions on reactive surfaces for catalyst screening and design.
    Krishnamoorthy A; Yildiz B
    Phys Chem Chem Phys; 2015 Sep; 17(34):22227-34. PubMed ID: 26243171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-Driven Prediction of Configurational Stability of Molecule-Adsorbed Heterogeneous Catalysts.
    Noh J; Chang H
    J Chem Inf Model; 2023 Oct; 63(19):5981-5995. PubMed ID: 37715300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting metal-metal interactions. II. Accelerating generalized schemes through physical insights.
    Choksi TS; Streibel V; Abild-Pedersen F
    J Chem Phys; 2020 Mar; 152(9):094702. PubMed ID: 33480718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symbolic Transformer Accelerating Machine Learning Screening of Hydrogen and Deuterium Evolution Reaction Catalysts in MA
    Zheng J; Sun X; Hu J; Wang S; Yao Z; Deng S; Pan X; Pan Z; Wang J
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):50878-50891. PubMed ID: 34672634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.