These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 33398095)

  • 1. The Rcs stress response inversely controls surface and CRISPR-Cas adaptive immunity to discriminate plasmids and phages.
    Smith LM; Jackson SA; Malone LM; Ussher JE; Gardner PP; Fineran PC
    Nat Microbiol; 2021 Feb; 6(2):162-172. PubMed ID: 33398095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity.
    Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC
    Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rsm (Csr) post-transcriptional regulatory pathway coordinately controls multiple CRISPR-Cas immune systems.
    Campa AR; Smith LM; Hampton HG; Sharma S; Jackson SA; Bischler T; Sharma CM; Fineran PC
    Nucleic Acids Res; 2021 Sep; 49(16):9508-9525. PubMed ID: 34403463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas immunity is repressed by the LysR-type transcriptional regulator PigU.
    Smith LM; Hampton HG; Yevstigneyeva MS; Mahler M; Paquet ZSM; Fineran PC
    Nucleic Acids Res; 2024 Jan; 52(2):755-768. PubMed ID: 38059344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance is not futile: bacterial 'innate' and CRISPR-Cas 'adaptive' immune systems.
    Fineran PC
    Microbiology (Reading); 2019 Aug; 165(8):834-841. PubMed ID: 30958259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How bacteria control the CRISPR-Cas arsenal.
    Leon LM; Mendoza SD; Bondy-Denomy J
    Curr Opin Microbiol; 2018 Apr; 42():87-95. PubMed ID: 29169146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial alginate regulators and phage homologs repress CRISPR-Cas immunity.
    Borges AL; Castro B; Govindarajan S; Solvik T; Escalante V; Bondy-Denomy J
    Nat Microbiol; 2020 May; 5(5):679-687. PubMed ID: 32203410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.
    Goldberg GW; Jiang W; Bikard D; Marraffini LA
    Nature; 2014 Oct; 514(7524):633-7. PubMed ID: 25174707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress.
    Malone LM; Hampton HG; Morgan XC; Fineran PC
    Nucleic Acids Res; 2022 Jan; 50(1):160-174. PubMed ID: 34928385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids.
    Jiang W; Maniv I; Arain F; Wang Y; Levin BR; Marraffini LA
    PLoS Genet; 2013; 9(9):e1003844. PubMed ID: 24086164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Biology of CRISPR-Cas: Backward and Forward.
    Hille F; Richter H; Wong SP; Bratovič M; Ressel S; Charpentier E
    Cell; 2018 Mar; 172(6):1239-1259. PubMed ID: 29522745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections.
    Gholizadeh P; Aghazadeh M; Asgharzadeh M; Kafil HS
    Eur J Clin Microbiol Infect Dis; 2017 Nov; 36(11):2043-2051. PubMed ID: 28601970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conquering CRISPR: how phages overcome bacterial adaptive immunity.
    Malone LM; Birkholz N; Fineran PC
    Curr Opin Biotechnol; 2021 Apr; 68():30-36. PubMed ID: 33113496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas systems in oral microbiome: From immune defense to physiological regulation.
    Gong T; Zeng J; Tang B; Zhou X; Li Y
    Mol Oral Microbiol; 2020 Apr; 35(2):41-48. PubMed ID: 31995666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs.
    Trasanidou D; Gerós AS; Mohanraju P; Nieuwenweg AC; Nobrega FL; Staals RHJ
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31077304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unravelling the structural and mechanistic basis of CRISPR-Cas systems.
    van der Oost J; Westra ER; Jackson RN; Wiedenheft B
    Nat Rev Microbiol; 2014 Jul; 12(7):479-92. PubMed ID: 24909109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditions for the spread of CRISPR-Cas immune systems into bacterial populations.
    Elliott JFK; McLeod DV; Taylor TB; Westra ER; Gandon S; Watson BNJ
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38896653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.
    Bondy-Denomy J; Garcia B; Strum S; Du M; Rollins MF; Hidalgo-Reyes Y; Wiedenheft B; Maxwell KL; Davidson AR
    Nature; 2015 Oct; 526(7571):136-9. PubMed ID: 26416740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria.
    Zhang Y; Yang J; Bai G
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.