These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33398116)

  • 1. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures.
    Linic S; Chavez S; Elias R
    Nat Mater; 2021 Jul; 20(7):916-924. PubMed ID: 33398116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications.
    Ninakanti R; Dingenen F; Borah R; Peeters H; Verbruggen SW
    Top Curr Chem (Cham); 2022 Aug; 380(5):40. PubMed ID: 35951165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis.
    Jiang W; Low BQL; Long R; Low J; Loh H; Tang KY; Chai CHT; Zhu H; Zhu H; Li Z; Loh XJ; Xiong Y; Ye E
    ACS Nano; 2023 Mar; 17(5):4193-4229. PubMed ID: 36802513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic Combination of Charge Carriers and Energy-Transfer Processes in Plasmonic Photocatalysis.
    Negrín-Montecelo Y; Kong XT; Besteiro LV; Carbó-Argibay E; Wang ZM; Pérez-Lorenzo M; Govorov AO; Comesaña-Hermo M; Correa-Duarte MA
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35734-35744. PubMed ID: 35913208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.
    Boerigter C; Aslam U; Linic S
    ACS Nano; 2016 Jun; 10(6):6108-15. PubMed ID: 27268233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of Charge Separation Enhancement in Plasmonic Photocatalysts under Coupling Conditions.
    Gao Y; Zhu Q; He S; Wang S; Nie W; Wu K; Fan F; Li C
    Nano Lett; 2023 Apr; 23(8):3540-3548. PubMed ID: 37026801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot Charge Carrier Transmission from Plasmonic Nanostructures.
    Christopher P; Moskovits M
    Annu Rev Phys Chem; 2017 May; 68():379-398. PubMed ID: 28301756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations.
    Cui L; Zhu Y; Nordlander P; Di Ventra M; Natelson D
    Nano Lett; 2021 Mar; 21(6):2658-2665. PubMed ID: 33710898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures.
    Ha M; Kim JH; You M; Li Q; Fan C; Nam JM
    Chem Rev; 2019 Dec; 119(24):12208-12278. PubMed ID: 31794202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot Carrier Extraction with Plasmonic Broadband Absorbers.
    Ng C; Cadusch JJ; Dligatch S; Roberts A; Davis TJ; Mulvaney P; Gómez DE
    ACS Nano; 2016 Apr; 10(4):4704-11. PubMed ID: 26982625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective.
    Tang H; Chen CJ; Huang Z; Bright J; Meng G; Liu RS; Wu N
    J Chem Phys; 2020 Jun; 152(22):220901. PubMed ID: 32534522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.
    Li S; Miao P; Zhang Y; Wu J; Zhang B; Du Y; Han X; Sun J; Xu P
    Adv Mater; 2021 Feb; 33(6):e2000086. PubMed ID: 32201994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-Dependent Bifunctional Plasmonic Photocatalysis in Au/Chalcopyrite Hybrid Nanostructures.
    An X; Kays JC; Lightcap IV; Ouyang T; Dennis AM; Reinhard BM
    ACS Nano; 2022 Apr; 16(4):6813-6824. PubMed ID: 35349253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of Multi-Directional Energy Transfer in a Hybrid Plasmonic-Excitonic Nanostructure.
    Pincelli T; Vasileiadis T; Dong S; Beaulieu S; Dendzik M; Zahn D; Lee SE; Seiler H; Qi Y; Xian RP; Maklar J; Coy E; Mueller NS; Okamura Y; Reich S; Wolf M; Rettig L; Ernstorfer R
    Adv Mater; 2023 Mar; 35(9):e2209100. PubMed ID: 36482148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.